Advances in Atomic Molecular Collisions - Tribedi, Lokesh C.; (ed.) - Prospero Internet Bookshop

Advances in Atomic Molecular Collisions
 
Product details:

ISBN13:9789819770625
ISBN10:9819770629
Binding:Hardback
No. of pages:278 pages
Size:235x155 mm
Language:English
Illustrations: 28 Illustrations, black & white; 90 Illustrations, color
700
Category:

Advances in Atomic Molecular Collisions

 
Edition number: 2024
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 117.69
Estimated price in HUF:
51 159 HUF (48 723 HUF + 5% VAT)
Why estimated?
 
Your price:

40 927 (38 978 HUF + 5% VAT )
discount is: 20% (approx 10 232 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

This book highlights the advances made in the field of atomic and molecular collisions both in the experimental and theoretical fronts. The study of the collision of charged particles with neutral target atoms or molecules started many decades ago. The charged particles mostly include electrons and fast heavy ions. This book discusses basic research in atomic molecular collision physics along with some of the important applications in other branches of physics and peripheral fields, such as plasma physics, radiobiology, astrophysics, nanosciences, antimatter physics, and surface science. The complexity of the target systems led to the need for more sophisticated experimental tools as well as advanced theoretical models. Since the last decade, a major focus has been to investigate the behavior of biomolecules (such as nucleobases) and water when irradiated with protons and heavy ions due its applications toward hadron therapy for cancer and radiobiology in general. The collisions with polycyclic aromatic hydrocarbons find applications toward astrochemistry that take place in the interstellar medium, solar wind as well as UV plasmonic devices. It has been proposed that the collective excitation in these molecules plays a major role in these applications. This book presents details about the advances made and the challenges faced in both experimental and theoretical front for studying the atomic collisions including these aspects. The book can be used as a reference for researchers, professionals, and also students. The recent advances in the sophisticated experimental tools for various types of experiments as well as the progress in the experimental methodologies are addressed along with the advancement in the theoretical front.

Long description:

This book highlights the advances made in the field of atomic and molecular collisions both in the experimental and theoretical fronts. The study of the collision of charged particles with neutral target atoms or molecules started many decades ago. The charged particles mostly include electrons and fast heavy ions. This book discusses basic research in atomic molecular collision physics along with some of the important applications in other branches of physics and peripheral fields, such as plasma physics, radiobiology, astrophysics, nanosciences, antimatter physics, and surface science. The complexity of the target systems led to the need for more sophisticated experimental tools as well as advanced theoretical models. Since the last decade, a major focus has been to investigate the behavior of biomolecules (such as nucleobases) and water when irradiated with protons and heavy ions due its applications toward hadron therapy for cancer and radiobiology in general. The collisions with polycyclic aromatic hydrocarbons find applications toward astrochemistry that take place in the interstellar medium, solar wind as well as UV plasmonic devices. It has been proposed that the collective excitation in these molecules plays a major role in these applications. This book presents details about the advances made and the challenges faced in both experimental and theoretical front for studying the atomic collisions including these aspects. The book can be used as a reference for researchers, professionals, and also students. The recent advances in the sophisticated experimental tools for various types of experiments as well as the progress in the experimental methodologies are addressed along with the advancement in the theoretical front.

Table of Contents:

COLTRIMS in Collision Physics.- The Post-Collision Interaction in Ionization by Ion Impact.- Ionization of Water, Ammonia, and Methane by Proton Collision: Experimental and Electronic Configuration Studies.- Fast Ion-Atom Collisions: Electron Spectroscopy of Mixed-State Beams.- EUV Spectroscopy of Highly Charged Ions with an Electron Beam Ion Trap.- On the Dynamics of Fast and Ultrafast Irradiation in Clusters and Molecules.- Inspecting State-Selective Distributions due to Charge Exchange Collisions of Bare Ions with Hydrogen.- Inspecting the Information Quantity in Ion-Hydrogen Electron Capture Process with the Shannon Entropy.- Target Ionization and Electron Loss Processes Induced by Neutral and Charged Hydrogen and Helium Projectiles in Water Molecule.- Classical-Trajectory Time-Dependent Mean-Field Theory for Ion-Molecule Collision Problems.- Perturbed Relativistic Coupled-Cluster Calculations of the Properties of Ar13+.- Intermolecular Coulombic Decay: Geometric And Electronic Structures of Ionized Water.- Young Type Electron Interference in Molecular Double Slit: A Brief Overview.