Product details:
ISBN13: | 9783030762773 |
ISBN10: | 3030762777 |
Binding: | Paperback |
No. of pages: | 676 pages |
Size: | 254x178 mm |
Weight: | 1303 g |
Language: | English |
Illustrations: | 100 Illustrations, black & white; 55 Illustrations, color |
541 |
Category:
Optimization, linear programming, game theory
Applied mathematics
Further readings in mathematics
Springer Yellow Sale
Optimization, linear programming, game theory (charity campaign)
Applied mathematics (charity campaign)
Further readings in mathematics (charity campaign)
Springer Yellow Sale (charity campaign)
An Optimization Primer
Edition number: 1st ed. 2021
Publisher: Springer
Date of Publication: 30 March 2023
Number of Volumes: 1 pieces, Book
Normal price:
Publisher's listprice:
EUR 64.19
EUR 64.19
Your price:
21 891 (20 849 HUF + 5% VAT )
discount is: 20% (approx 5 473 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
Not in stock at Prospero.
Short description:
This richly illustrated book introduces the subject of optimization to a broad audience with a balanced treatment of theory, models and algorithms. Through numerous examples from statistical learning, operations research, engineering, finance and economics, the text explains how to formulate and justify models while accounting for real-world considerations such as data uncertainty. It goes beyond the classical topics of linear, nonlinear and convex programming and deals with nonconvex and nonsmooth problems as well as games, generalized equations and stochastic optimization.
The book teaches theoretical aspects in the context of concrete problems, which makes it an accessible onramp to variational analysis, integral functions and approximation theory. More than 100 exercises and 200 fully developed examples illustrate the application of the concepts. Readers should have some foundation in differential calculus and linear algebra. Exposure to real analysiswould be helpful but is not prerequisite.
Long description:
?In the reviewer's opinion, this is an important book ? . a lot of applications are given, so on one hand the readers can benefit from deep insights into the mathematical background of optimization theory ? . This book, which as all books reflects the tastes of its authors, is a solid reference, not only for graduate students and postgraduate students, but also for all those researchers interested in recent developments of optimization theory and methods.? (Giorgio Giorgi, Mathematical Reviews, December, 2022)
This richly illustrated book introduces the subject of optimization to a broad audience with a balanced treatment of theory, models and algorithms. Through numerous examples from statistical learning, operations research, engineering, finance and economics, the text explains how to formulate and justify models while accounting for real-world considerations such as data uncertainty. It goes beyond the classical topics of linear, nonlinear and convex programming and deals with nonconvex and nonsmooth problems as well as games, generalized equations and stochastic optimization.
The book teaches theoretical aspects in the context of concrete problems, which makes it an accessible onramp to variational analysis, integral functions and approximation theory. More than 100 exercises and 200 fully developed examples illustrate the application of the concepts. Readers should have some foundation in differential calculus and linear algebra. Exposure to real analysiswould be helpful but is not prerequisite.
?In the reviewer's opinion, this is an important book ? . a lot of applications are given, so on one hand the readers can benefit from deep insights into the mathematical background of optimization theory ? . This book, which as all books reflects the tastes of its authors, is a solid reference, not only for graduate students and postgraduate students, but also for all those researchers interested in recent developments of optimization theory and methods.? (Giorgio Giorgi, Mathematical Reviews, December, 2022)
Table of Contents:
Prelude.- Convex optimization.- Optimization under uncertainty.- Minimization problems.- Perturbation and duality.- Without convexity or smoothness.- Generalized Equations.- Risk modeling and sample averages.- Games and minsup problems.- Decomposition.