Anisotropic Isoperimetric Problems and Related Topics - Franceschi, Valentina; Pluda, Alessandra; Saracco, Giorgio; (ed.) - Prospero Internet Bookshop

 
Product details:

ISBN13:9789819769834
ISBN10:9819769833
Binding:Hardback
No. of pages:159 pages
Size:235x155 mm
Language:English
Illustrations: 9 Illustrations, black & white; 1 Illustrations, color
700
Category:

Anisotropic Isoperimetric Problems and Related Topics

 
Edition number: 2024
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 235.39
Estimated price in HUF:
100 346 HUF (95 568 HUF + 5% VAT)
Why estimated?
 
Your price:

80 277 (76 454 HUF + 5% VAT )
discount is: 20% (approx 20 069 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

This book contains contributions from speakers at the "Anisotropic Isoperimetric Problems & Related Topics" conference in Rome, held from Sep 5 to 9, 2022.



The classic isoperimetric problem has fascinated mathematicians of all eras, starting from the ancient Greeks, due to its simple statement: what are the sets of a given volume with minimal perimeter? The problem is mathematically well understood, and it plays a crucial role in explaining physical phenomena such as soap bubble shapes.



Variations of the problem, including weighted counterparts with density dependencies, representing inhomogeneity and anisotropy of the medium, broaden its applicability, even in non-Euclidean environments, and they allow for descriptions, e.g., of crystal shapes.



At large, the perimeter's physical interpretation is that of an attractive force; hence, it also appears in describing systems of particles where a balance between attractive and repulsive forces appears. A prominent example is that of Gamow's liquid drop model for atomic nuclei, where protons are subject to the strong nuclear attractive force (represented by the perimeter) and the electromagnetic repulsive force (represented by a nonlocal term). Such a model has been shown to be sound, as it explains the basic characteristics of the nuclei, and it successfully predicts nuclear fission for nuclei with a large atomic number.



Similar energy functionals model various physical and biological systems, showcasing the competition between short-range interfacial and long-range nonlocal terms, leading to pattern formation. The authors mention, e.g., the Ohta?Kawasaki model for microphase separation of diblock copolymers and the Yukawa potential for colloidal systems. Despite diverse systems, the emergence of microphases follows similar patterns, although rigorously proving this phenomenon remains a challenge.



The book collects several contributions within these topics, shedding light on the current state of the art.

Long description:

This book contains contributions from speakers at the "Anisotropic Isoperimetric Problems & Related Topics" conference in Rome, held from Sep 5 to 9, 2022.



The classic isoperimetric problem has fascinated mathematicians of all eras, starting from the ancient Greeks, due to its simple statement: what are the sets of a given volume with minimal perimeter? The problem is mathematically well understood, and it plays a crucial role in explaining physical phenomena such as soap bubble shapes.



Variations of the problem, including weighted counterparts with density dependencies, representing inhomogeneity and anisotropy of the medium, broaden its applicability, even in non-Euclidean environments, and they allow for descriptions, e.g., of crystal shapes.



At large, the perimeter's physical interpretation is that of an attractive force; hence, it also appears in describing systems of particles where a balance between attractive and repulsive forces appears. A prominent example is that of Gamow's liquid drop model for atomic nuclei, where protons are subject to the strong nuclear attractive force (represented by the perimeter) and the electromagnetic repulsive force (represented by a nonlocal term). Such a model has been shown to be sound, as it explains the basic characteristics of the nuclei, and it successfully predicts nuclear fission for nuclei with a large atomic number.



Similar energy functionals model various physical and biological systems, showcasing the competition between short-range interfacial and long-range nonlocal terms, leading to pattern formation. The authors mention, e.g., the Ohta?Kawasaki model for microphase separation of diblock copolymers and the Yukawa potential for colloidal systems. Despite diverse systems, the emergence of microphases follows similar patterns, although rigorously proving this phenomenon remains a challenge.



The book collects several contributions within these topics, shedding light on the current state of the art.

Table of Contents:

.- Geometric invariants of non-smooth framed curves (by Bevilacqua, Lussardi, and Marzocchi).- Minimal periodic foams with equal cells (by Cesaroni and Novaga).- On a Cheeger--Kohler-Jobin inequality (by Lucardesi, Mazzoleni, and Ruffini).- Isoperimetry on manifolds with Ricci bounded below: overview of recent results and methods (by Pozzetta).- Stochastic homogenization of functionals defined on finite partitions (by Bach and Ruf).- On sets with finite distributional fractional perimeter (by Comi and Stefani).- On a Free-Endpoint Isoperimetric Problem in R^2 (by Alama, Bronsard, and Vriend).- Isoperimetric sets in nonnegative scalar curvature and their role through various concepts of mass (by Benatti and Fogagnolo).- A crystallization result in two dimensions for a soft disc affine potential (by Del Nin and De Luca).