
Big Data Processing Using Spark in Cloud
Series: Studies in Big Data; 43;
- Publisher's listprice EUR 106.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 3 631 Ft off)
- Discounted price 41 753 Ft (39 765 Ft + 5% VAT)
45 385 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2019
- Publisher Springer
- Date of Publication 26 June 2018
- Number of Volumes 1 pieces, Book
- ISBN 9789811305498
- Binding Hardback
- No. of pages264 pages
- Size 235x155 mm
- Weight 588 g
- Language English
- Illustrations 27 Illustrations, black & white; 62 Illustrations, color 0
Categories
Short description:
The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data?s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data.
The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
Long description:
The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data?s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data.
The book is intended for data engineers and scientistsworking on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
Table of Contents:
Concepts of Big Data and Apache Spark.- Big Data Analysis in Cloud and Machine Learning.- Security Issues and Challenges related to Big Data.- Big Data Security Solutions in Cloud.- Data Science and Analytics.- Big Data Technologies.- Data Analysis with Casandra and Spark.- Spin up the Spark Cluster.- Learn Scala.- IO for Spark.- Processing with Spark.- Spark Data Frames and Spark SQL.- Machine Learning and Advanced Analytics.- Parallel Programming with Spark.- Distributed Graph Processing with Spark.- Real Time Processing with Spark.- Spark in Real World.- Case Studies.
More