Product details:
ISBN13: | 9781470467098 |
ISBN10: | 1470467097 |
Binding: | Paperback |
No. of pages: | 148 pages |
Size: | 257x181x19 mm |
Weight: | 304 g |
Language: | English |
716 |
Category:
Combinatorial Convexity
Series:
University Lecture Series;
Publisher: MP?AMM American Mathematical
Date of Publication: 28 February 2022
Normal price:
Publisher's listprice:
GBP 48.95
GBP 48.95
Your price:
23 129 (22 028 HUF + 5% VAT )
discount is: 10% (approx 2 570 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
Not in stock at Prospero.
Short description:
Explores the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research.
Long description:
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Caratheodory, and the $(p, q)$ theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.
The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.
The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.