Computer Vision Metrics - Krig, Scott; - Prospero Internet Bookshop

Computer Vision Metrics: Survey, Taxonomy, and Analysis of Computer Vision, Visual Neuroscience, and Visual AI
 
Product details:

ISBN13:9789819933921
ISBN10:9819933927
Binding:Hardback
No. of pages:761 pages
Size:254x178 mm
Language:English
Illustrations: 1 Illustrations, black & white
700
Category:

Computer Vision Metrics

Survey, Taxonomy, and Analysis of Computer Vision, Visual Neuroscience, and Visual AI
 
Edition number: Second Edition 2024
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 117.69
Estimated price in HUF:
51 159 HUF (48 723 HUF + 5% VAT)
Why estimated?
 
Your price:

47 066 (44 825 HUF + 5% VAT )
discount is: 8% (approx 4 093 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

This 2nd Edition, based on the successful 2016 textbook, has been updated and expanded to cover 3rd generation Computer Vision and AI as it supersedes historical visual computing methods, providing a comprehensive survey of essential topics and methods in Computer Vision. With over 1,200 essential references, as well as chapter-by-chapter learning assignments, the book offers a valuable resource for students, researchers, scientists and engineers, helping them dig deeper into core computer vision and foundational visual computing and neuroscience topics. 

As before, a historical survey of advances in Computer Vision is provided, updated to reflect the latest methods such as Vision Transformers, attention models, alternative features such as Fourier neurons and Binary neurons, hybrid DNN architectures, self-supervised and enhanced learning models, Associative Multimodal Learning, Continuous Learning, View Synthesis, intelligent Scientific Imaging, and advances in training protocols. Updates have also been added for 2d/3d cameras, software libraries and open source resources, computer vision cloud services, and vision/AI hardware accelerators. Discussion and analysis are provided to uncover intuition and delve into the essence of key advancements, applied and forward-looking topics. 



Long description:
This 2nd Edition, based on the successful 2016 textbook, has been updated and expanded to cover 3rd generation Computer Vision and AI as it supersedes historical visual computing methods, providing a comprehensive survey of essential topics and methods in Computer Vision. With over 1,200 essential references, as well as chapter-by-chapter learning assignments, the book offers a valuable resource for students, researchers, scientists and engineers, helping them dig deeper into core computer vision and foundational visual computing and neuroscience topics. 

As before, a historical survey of advances in Computer Vision is provided, updated to reflect the latest methods such as Vision Transformers, attention models, alternative features such as Fourier neurons and Binary neurons, hybrid DNN architectures, self-supervised and enhanced learning models, Associative Multimodal Learning, Continuous Learning, View Synthesis, intelligent Scientific Imaging, andadvances in training protocols. Updates have also been added for 2d/3d cameras, software libraries and open source resources, computer vision cloud services, and vision/AI hardware accelerators. Discussion and analysis are provided to uncover intuition and delve into the essence of key advancements, applied and forward-looking topics. 


Table of Contents:
Chapter 1. 2D/3D Image Capture and Representation.- Chapter 2. Image Pre-Processing Taxonomy, Colorimetry.- Chapter 3. Global and Regional Feature Descriptors.- Chapter 4. Local Feature Descriptors.- Chapter 5. Feature Descriptor Attribute Taxonomy.- Chapter 6. Feature Detector and Descriptor Survey.- Chapter 7. Ground Truth Data Topics, Benchmarks, Analysis.- Chapter 8. Vision Pipelines and HW/SW Optimizations.- Chapter 9. Feature Learning Taxonomy and Neuroscience Background.-Chapter 10. Feature Learning and Deep Learning Survey.- Chapter 11. Attention, Transformers, Hybrids, DDN?s.- Chapter 12. Applied And Future Visual Computing Topics.