Convex Cones - Schneider, Rolf; - Prospero Internet Bookshop

Convex Cones: Geometry and Probability
 
Product details:

ISBN13:9783031151262
ISBN10:3031151267
Binding:Paperback
No. of pages:347 pages
Size:235x155 mm
Weight:551 g
Language:English
Illustrations: 1 Illustrations, black & white
581
Category:

Convex Cones

Geometry and Probability
 
Edition number: 1st ed. 2022
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 53.49
Estimated price in HUF:
23 252 HUF (22 144 HUF + 5% VAT)
Why estimated?
 
Your price:

18 601 (17 715 HUF + 5% VAT )
discount is: 20% (approx 4 650 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn?Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula.

In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known. 


Long description:

This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn?Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula.

In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known.

 




?Convex cones: geometry and probability stands out in the present literature as probably the first and only textbook entirely dedicated to the development of the theory of convex cones ? . Given the self-contained nature of the presentation and the number of results and research directions that are touched upon ? this book seems bound to serve as a useful reference point for a number of research mathematicians in the years to come.? (Giorgos Chasapis, Mathematical Reviews, December, 2023)



?This book develops the necessary machinery for geometric applications of convex cones. The concise style and wealth of references and ideas make this book without doubt a valuable source of information. Each chapter of the book starts with an overview that outlines the main ideas and results. Moreover, each section finishes with a list of notes containing further references, open problems and extensions of presented results.? (Florian Pausinger, zbMATH 1505.52001, 2023)

Table of Contents:

Basic notions and facts.- Angle functions.- Relations to spherical geometry.- Steiner and kinematic formulas.- Central hyperplane arrangements and induced cones.- Miscellanea on random cones.- Convex hypersurfaces adapted to cones.