Deep Learning based applications for Multimedia Processing Applications - Bhatti, Uzair Aslam; Mengxing, Huang; Li, Jingbing;(ed.) - Prospero Internet Bookshop

Deep Learning based applications for Multimedia Processing Applications

Volume 1 and 2
 
Edition number: 1
Publisher: CRC Press
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 160.00
Estimated price in HUF:
84 000 HUF (80 000 HUF + 5% VAT)
Why estimated?
 
Your price:

67 200 (64 000 HUF + 5% VAT )
discount is: 20% (approx 16 800 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

Divided into two volumes, Volume 1 begins by introducing the fundamental concepts of deep learning, providing readers with a solid foundation to understand its relevance in multimedia processing. Volumes 2 delves into advanced topics such as convolutional neural networks, recurrent neural networks, and generative adversarial networks. 

Long description:

Deep Learning for Multimedia Processing is a comprehensive guide that explores the revolutionary impact of deep learning techniques in the field of multimedia processing. Written for a wide range of readers, from students to professionals, this book offers a concise and accessible overview of the application of deep learning in various multimedia domains, including image processing, video analysis, audio recognition, and natural language processing.


Divided into two volumes, Volume One begins by introducing the fundamental concepts of deep learning, providing readers with a solid foundation to understand its relevance in multimedia processing. Volumes Two delves into advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs), explaining their unique capabilities in multimedia tasks. Readers will discover how deep learning techniques enable accurate and efficient image recognition, object detection, semantic segmentation, and image synthesis. The book also covers video analysis techniques, including action recognition, video captioning, and video generation, highlighting the role of deep learning in extracting meaningful information from videos.


Furthermore, the book explores audio processing tasks such as speech recognition, music classification, and sound event detection using deep learning models. It demonstrates how deep learning algorithms can effectively process audio data, opening up new possibilities in multimedia applications. Lastly, the book explores the integration of deep learning with natural language processing techniques, enabling systems to understand, generate, and interpret textual information in multimedia contexts.


Throughout the book, practical examples, code snippets, and real-world case studies are provided to help readers gain hands-on experience in implementing deep learning solutions for multimedia processing. Deep Learning for Multimedia Processing is an essential resource for anyone interested in harnessing the power of deep learning to unlock the vast potential of multimedia data.

Table of Contents:

Volume 1


1. A Novel Robust Watermarking Algorithm for Encrypted Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition Meng Yang, Jingbing Li1, Uzair Aslam Bhatti, Yiyi Yuan, and QinQing Zhang. 2. Robust Zero Watermarking Algorithm for Encrypted Medical Images Based on SUSAN-DCT Jingbing Li, Qinqing Zhang, Meng Yang, and Yiyi Yuan. 3. Robust Watermarking Algorithm for Encrypted Medical Volume Data Based on PJFM and 3D-DCT Lei Cao, Jingbing Li, and Uzair Aslam Bhatti. 4. Robust Zero Watermarking Algorithm for Medical Images Based on BRISK and DCT Fangchun Dong, Jingbing Li, and Uzair Aslam Bhatt. 5. Robust Color Images Zero Watermarking Algorithm Based on Smooth Wavelet Transform and Daisy descriptor Yiyi Yuan, Jingbing Li1, Uzair Aslam Bhatti, Meng Yang, and Qinqing Zhang. 6. Robust Multi-Watermarking Agorithm based on Darknet53 Convolutional Neural Network Dekai Li, Jingbing Li, and Uzair Aslam Bhatti. 7. Robust Multi-Watermarking Algorithm for Medical Images Based on Squeezenet Transfer Learning Pengju Zhang, Jingbing Li, and Uzair Aslam Bhatti. 8. Deep Learning Applications in Digital Image Security: Latest Methods And Techniques Saqib Ali Nawaz, Jingbing Li, Uzair Aslam Bhatti, Muhammad Usman Shoukat, and Raza Muhammad Ahmad. 9. Image Fusion Techniques and Applications for Remote Sensing Images and Medical Images Emadalden Alhatami, MengXing Huang, and Uzair Aslam Bhatti. 10. Detecting Phishing URLs Through Deep Learning Models Shah Noor, Sibghat Ullah Bazai, Saima Tareen, and Shafi Ullah. 11. Augmenting Multimedia Analysis: A Fusion of Deep Learning with Differential Privacy Iqra Tabassum and Dr. Sibghat Ullah Bazai. 12. Multi-Classification Deep Learning Models for Detecting Multiple Chest Infection using Cough and Breath Sound Amna Tahir, Hassaan Malik, and Muhammad Umar Chaudhry. 13. Classifying Traffic Signs using Convolutional Neural Networks based on Deep Learning Models Saira Akram, Sibghat Ullah Bazai, and Shah Marjan. 14. Cloud-Based Intrusion Detection System using Deep Neural Network and Human-in-the-Loop Decision-Making Hootan Alavizadeh and Hooman Alavizadeh.


Volume 2


1. A Review on Comparative Study of Image-Denoising in Medical Imaging Nasir Ishfaq. 2. Remote Sensing Image Classification: A Comprehensive Review and Applications Uzair Aslam Bhatti, Jingbing Li, Saqib Ali Nawaz, Huang Mengxing, and Raza Muhammad Ahmad. 3. Deep learning framework for Face Detection and Recognition for Dark Faces using VGG19 with Variant of Histogram Equalization Kirti and Gagandeep. 4. A 3D Method for combining Geometric Verification and Volume Reconstruction in a Photo Tourism system Muhammad Sajid Khan and Andrew Ware. 5. Deep Learning Algorithms and Architectures for Multimodal Data Analysis Anwar Ali Sathio, Prof. Dr. Muhammad Malook Rind, and Dr. Abdullah Lakhan. 6. Deep Learning Algorithms - Clustering and Classifications for Multimedia Data Anwar Ali Sathio, Prof. Dr. Muhammad Malook Rind, and Dr. Abdullah Lakhan. 7. A Non-Reference Low-Light Image Enhancement Approach using Deep Convolutional Neural Networks Ziaur Rahman, Muhammad Aamir, Kanza Gulzar, Jameel Ahmed Bhutto, Muhammad Ishfaq, Zaheer Ahmed Dayo, and Khalid Hussain Mohammadani. 8. Human Pose Analysis and Gesture Recognition: Methods and Applications
Muhammad Haroon, Saud Altaf, Kanza Gulzar, and Muhammad Aamir. 9. Human Action Recognition Using ConvLSTM with Adversarial Noise and Compressive-Sensing-Based Dimensionality Reduction Concise and Informative Mohsin Raza Siyal, Mansoor Ebrahim, Dr.Nadeem Qazi, Syed Hasan Adil, and Kamran Raza. 10. Application of Machine Learning to Urban Ecology Mir Muhammad Nizamani, Ghulam Muhae-Ud-Din, Qian Zhang, Muhammad Awais, Muhammad Qayyum, Muhammad Farhan, Muhammad Jabran, and Yong Wang. 11. Application of Machine Learning in Urban Land Use Haili Zhang and Qin Zhou. 12. Application of GIS and Remote Sensing Technology in Ecosystem Services and Biodiversity Conservation Mir Muhammad Nizamani, Qian Zhang, Ghulam Muhae-Ud-Din, Muhammad Awais, Muhammad Qayyum, Muhammad Farhan, Muhammad Jabran, and Yong Wang. 13. From Data Quality to Model Performance: Navigating the Landscape of Deep Learning Model Evaluation Muhammad Akram, Wajid Hassan Moosa, and Najiba. 14. Deep Learning for the Turnover Intention of Industrial Workers: Evidence from Vietnam Nguyen Ngoc Long, Nguyen Ngoc Lam, and Bui Huy Khoi. 15. Deep Learning for Multimedia Analysis Hafiz Gulfam Ahmad Umar. 16. Challenges and Techniques to Improve Deep Detection and Recognition Methods for Text Spotting Anuj Abraham and Shitala Prasad. 17. Leaf Classification and Disease Detection Based on R-CCN Deep Learning Approach Tayyab Rehman, Muhammad Sajid Khan, and Noshina Tariq. 18. Deep Learning for Multimedia Analysis: Applications, Challenges, and Future Directions Dr. Ahmed Mateen Buttar, Muhammad Anwar Shahid, Muhammad Nouman Arshad, and Irfan Ali.