ISBN13: | 9781032379371 |
ISBN10: | 1032379375 |
Binding: | Paperback |
No. of pages: | 286 pages |
Size: | 234x156 mm |
Weight: | 453 g |
Language: | English |
Illustrations: | 18 Illustrations, black & white; 10 Illustrations, color; 8 Halftones, black & white; 8 Halftones, color; 10 Line drawings, black & white; 2 Line drawings, color; 31 Tables, black & white |
700 |
Natural sciences in general, history of science, philosophy of science
Histology
Clinical medicine and internal medicine in general
Radiology, imaging, nuclear medicine
Pharmacology, therapeutics, toxicology
Genetics
Artificial Intelligence
Medical biotechnology
Natural sciences in general, history of science, philosophy of science (charity campaign)
Histology (charity campaign)
Clinical medicine and internal medicine in general (charity campaign)
Radiology, imaging, nuclear medicine (charity campaign)
Pharmacology, therapeutics, toxicology (charity campaign)
Genetics (charity campaign)
Artificial Intelligence (charity campaign)
Medical biotechnology (charity campaign)
Diagnosis and Treatment of Cancer using Thermal Therapies
GBP 45.99
Click here to subscribe.
Cancer is considered a leading cause of death worldwide. Therefore, in recent years, not only new diagnosis methods but also new treatments have been developed. This book discusses new trends such as artificial intelligence, thermal images, bioimpedance to diagnose cancer, and novel treatment techniques.
New research is being conducted in the diagnosis and new treatments of cancer that has high efficacy and are minimally invasiveness. Artificial intelligence, bioimpedance, thermal images and nanomaterials have been used to provide early diagnosis. New treatments based on the generation of microwaves, radiofrequency, or ultrasound have been proposed in the last couple of decades. Although thermotherapies have been shown to be efficient, for them to be considered as a primary treatment, they must overcome some hurdles. One of the main challenges is to ensure applicators that point the electromagnetic or the mechanical waves at a tumor, don't affect the surrounding healthy tissues. In some cases, nanoparticles have also been designed to achieve better focus. The design of new applicators can be made by computational models based on methods such as the finite element. However, to efficiently predict the applicator?s performance, it is important that dielectric, thermal, and acoustic properties (tissue characterization) are included in the models. Not only healthy tissue, but also tumors must be characterized. Patient specific treatment planning, which consists of a 3D patient model based on medical images, can be developed to implement a safety treatment. Moreover, tissue properties as well as the applicator must be defined. Parameters such as temperature increase, and heat pattern must be evaluated to ensure patient safety and treatment success.
Main Problems in Cancer Diagnosis and Treatments. Bioimpedance and Cancer Detection. Thermal Images: Towards Cancer Detection. Artificial Intelligence and Cancer Detection. Hyperspectral Imaging for Cancer Applications. Oral Cancer Detection by Multi-Spectral Fluorescence Lifetime Imaging Microscopy (M-FLIM) And Linear Unmixing. Thermotherapies Based On Microwaves (MW) And Radiofrequency (RF). Thermotherapies Based On Ultrasound. Biological Effects of Thermal Therapies (EM Waves and Mechanical Waves). Photothermal Techniques in Cancer Detection- Photoacoustic Imaging. Tissue Characterization for Microwave and Ultrasonic Applications. Nanotheranostics in Cancer. Magneto Hyperthermia.