ISBN13: | 9781032502977 |
ISBN10: | 1032502975 |
Binding: | Paperback |
No. of pages: | 278 pages |
Size: | 229x152 mm |
Weight: | 512 g |
Language: | English |
Illustrations: | 21 Illustrations, black & white; 1 Illustrations, color; 21 Line drawings, black & white; 1 Line drawings, color; 1 Tables, black & white |
696 |
Algebra
Applied mathematics
Theory of computing, computing in general
Computer architecture, logic design
Software development
Further readings in the field of computing
Algebra (charity campaign)
Applied mathematics (charity campaign)
Theory of computing, computing in general (charity campaign)
Computer architecture, logic design (charity campaign)
Software development (charity campaign)
Further readings in the field of computing (charity campaign)
Dual Quaternions and Their Associated Clifford Algebras
GBP 44.99
Click here to subscribe.
Not in stock at Prospero.
This book presents dual quaternions and their associated Clifford algebras in a new light, accessible to and geared towards the Computer Graphics community.
Clifford algebra for dual quaternions has emerged recently as an alternative to standard matrix algebra as a computational framework for computer graphics. This book presents dual quaternions and their associated Clifford algebras in a new light, accessible to and geared toward the computer graphics community.
Collecting all the associated formulas and theorems in one place, this book provides an extensive and rigorous treatment of dual quaternions, as well as showing how two models of Clifford algebra emerge naturally from the theory of dual quaternions. Each section comes complete with a set of exercises to help readers sharpen and practice their understanding.
This book is accessible to anyone with a basic knowledge of quaternion algebra and is of particular use to forward-thinking members of the computer graphics community.
Part I. Dual Quaternions, 1.1. Algebras and Dual Algebras, 1.2. Algebra, 1.3. Geometry, 1.4. Rigid Motions, 1.5. Rigid Motions as Rotations in 8-Dimensions, 1.6. Screw Linear Interpolation (ScLERP), 1.7. Perspective and Pseudo-Perspective, 1.8. Visualizing Quaternions and Dual Quaternions, 1.9. Matrices versus Dual Quaternions, 1.10. Insights, 1.11. Formulas, Part II. Clifford Algebras for Dual Quaternions, 1. A Brief Review of Clifford Algebra, 2. The Plane Model of Clifford Algebra for Dual Quaternions, 3. The Point Model of Clifford Algebra for Dual Quaternions