Eigene KI-Anwendungen programmieren - Karatas, Metin; - Prospero Internet Bookshop

 
Product details:

ISBN13:9783836297639
ISBN10:3836297639
Binding:Paperback
No. of pages:450 pages
Size:26x173x230 mm
Weight:831 g
Language:German
706
Category:

Eigene KI-Anwendungen programmieren

Ihr Einstieg in die KI mit zwölf Programmierprojekten. Einfach mit Python - ohne Vorkenntnisse
 
Publisher: Rheinwerk Verlag
Date of Publication:
Number of Volumes: Großformatiges Paperback. Klappenbroschur
 
Normal price:

Publisher's listprice:
EUR 29.90
Estimated price in HUF:
12 997 HUF (12 378 HUF + 5% VAT)
Why estimated?
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Long description:

KI-Anwendungen selbst erstellen und mit eigenen Daten nutzen - das ist möglich mit frei verfügbarer Technologie, lokaler Hardware und sogar ohne Programmierkenntnisse.

Die KI-Technologie wird in atemberaubendem Tempo immer zugänglicher. Mit diesem Buch sind Sie immer einen Schritt voraus. Lernen Sie einschlägige KI-Verfahren kennen und setzen Sie für jedes dieser Verfahren eine Anwendung selbst um. Dafür nutzen Sie die Data Science Plattform KNIME - ideal, um eigene Daten aus unterschiedlichen Quellen zu integrieren und mit rein grafischer Programmierung Anwendungen zu erstellen.

Das Buch deckt eine Reihe von Themen ab, darunter:

Künstliche neuronale Netze
Entscheidungsbäume
Bilderkennung
Convolutional Neural Networks
Transfer Learning
Textgenerierung
Unsupervised und Reinforcement Learning
Transformer: ChatGPT, DALL-E und Co.

Außerdem führen wir Sie in die Welt von TensorFlow und Keras ein und zeigen Ihnen, wie Sie Anwendungen in einfachem Python erstellen können. Alle vorgestellten Projekte sind in der beruflichen Bildung erprobt und haben sich als effektiv erwiesen.

So bereichern Sie Ihre Skills mit einem modernen Werkzeugkasten, mit dem Sie maschinelles Lernen in der Datenanalyse, dem Controlling und vielen weiteren Anwendungsfeldern nutzen können.

Alle Codebeispiele zum Download; Jupyter Notebooks erleichtern die Arbeit mit dem Material zum Buch. Starten Sie jetzt mit Ihrer eigenen KI!

Aus dem Inhalt:

  • Installation und Konfiguration
  • Mit verschiedenen Datenquellen arbeiten
  • Bilderkennung
  • Klassifizierungsaufgaben
  • Convolutional Neural Networks
  • Transfer Learning
  • Zeitreihenanalysen
  • Texte generieren
  • Unsupervised Learning
  • Reinforcement Learning
  • Datenanalyse mit KNIME
  • Evolutionäre Algorithmen
  • ChatGPT und DALL-E



?Das Buch "Eigene KI-Anwendungen programmieren" ist eine wertvolle Ressource für alle, die sich in diesem dynamischen Feld weiterbilden möchten. Die Kombination aus tiefgehenden Erklärungen, praxisnahen Beispielen und einer breiten Themenabdeckung macht das Buch zu einer Empfehlung für jeden, der die Faszination und das Potenzial künstlicher Intelligenz erkunden und eigene Projekte realisieren möchte.? Revisionspraxis PRev - Journal für Revision, IT-Sicherheit, SAP-Sicherheit und Datenschutz 202404
Table of Contents:

Materialien zum Buch ... 13
1. Einleitung ... 15

1.1 ... Was bietet dieses Buch? ... 16
1.2 ... Was ist eine ?künstliche Intelligenz?? ... 17
1.3 ... Geschichte der KI -- ein kurzer Überblick ... 19
1.4 ... Verwendete Werkzeuge ... 21

2. Installation ... 27

2.1 ... Anaconda-Distribution ... 27
2.2 ... KNIME ... 33

3. Das künstliche neuronale Netz ... 43

3.1 ... Klassifizierung ... 44
3.2 ... Das Kochrezept ... 46
3.3 ... Aufbau künstlicher neuronaler Netze ... 50
3.4 ... Aufbau eines künstlichen Neurons ... 52
3.5 ... Feed Forward ... 53
3.6 ... Backpropagation ... 56
3.7 ... Aktualisierung der Gewichte ... 58
3.8 ... KNN für Klassifizierung ... 61
3.9 ... Hyperparameter und Overfitting ... 69
3.10 ... Umgang mit nichtnumerischen Daten ... 71
3.11 ... Umgang mit Datenlücken ... 73
3.12 ... Korrelation versus Kausalität ... 75
3.13 ... Normierung der Daten ... 84
3.14 ... Regression ... 87
3.15 ... Deployment ... 89
3.16 ... Übungen ... 95

4. Entscheidungsbäume ... 99

4.1 ... Einfache Entscheidungsbäume ... 100
4.2 ... Boosting ... 112
4.3 ... XGBoost Regressor ... 122
4.4 ... Deployment ... 123
4.5 ... Entscheidungsbäume mit Orange ... 125
4.6 ... Übungen ... 129

5. Faltungsschichten, Bilder und mehr ... 131

5.1 ... Einfache Bildklassifizierung ... 133
5.2 ... Hyperparameter-Optimierung mit Early Stopping und KerasTuner ... 138
5.3 ... Convolutional Neural Network (CNN) ... 143
5.4 ... Bildklassifizierung mit CIFAR-10 ... 150
5.5 ... Verwendung vortrainierter Netze ... 153
5.6 ... Übungen ... 157

6. Transfer Learning ... 159

6.1 ... Funktionsweise ... 162
6.2 ... Übungen ... 169

7. Anomalieerkennung ... 171

7.1 ... Unausgewogene Daten ... 172
7.2 ... Resampling ... 177
7.3 ... Autoencoder ... 179
7.4 ... Übungen ... 186

8. Textklassifizierung ... 187

8.1 ... Embedding Layer ... 187
8.2 ... GlobalAveragePooling1D Layer ... 191
8.3 ... Text Vectorization ... 193
8.4 ... Analyse der Zusammenhänge ... 196
8.5 ... Klassifizierung großer Datenmengen ... 201
8.6 ... Übungen ... 204

9. Clusteranalyse ... 205

9.1 ... Grafische Analyse der Daten ... 206
9.2 ... Der Algorithmus k-Means-Clustering ... 211
9.3 ... Das fertige Programm ... 214
9.4 ... Übungen ... 217

10. AutoKeras ... 219

10.1 ... Klassifizierung ... 220
10.2 ... Regression ... 222
10.3 ... Bildklassifizierung ... 223
10.4 ... Textklassifizierung ... 226
10.5 ... Übungen ... 229

11. Visuelle Programmierung mit KNIME ... 231

11.1 ... Einfache künstliche neuronale Netze ... 232
11.2 ... XGBoost ... 252
11.3 ... Bildklassifizierung mit vortrainiertem Modell ... 256
11.4 ... Transfer Learning ... 262
11.5 ... Autoencoder ... 268
11.6 ... Textklassifizierung ... 277
11.7 ... AutoML ... 281
11.8 ... Clusteranalyse ... 285
11.9 ... Zeitreihenanalyse ... 290
11.10 ... Textgenerierung ... 306
11.11 ... Weitere Hinweise zu KNIME ... 312
11.12 ... Übungen ... 313

12. Reinforcement Learning ... 317

12.1 ... Q-Learning ... 318
12.2 ... Erforderliche Python-Kenntnisse für das Spiel ... 324
12.3 ... Training ... 329
12.4 ... Test ... 332
12.5 ... Ausblick ... 333
12.6 ... Übungen ... 334

13. Genetische Algorithmen ... 335

13.1 ... Der Algorithmus ... 336
13.2 ... Beispiel einer sortierten Liste ... 340
13.3 ... Beispiel für Gleichungssysteme ... 343
13.4 ... Beispielanwendung aus der Praxis ... 346
13.5 ... Übungen ... 349

14. ChatGPT und GPT-4 ... 351

14.1 ... Prompt Engineering ... 354
14.2 ... Programmierschnittstelle ChatGPT ... 372
14.3 ... Übung ... 389

15. DALL-E und Nachfolgemodelle ... 391

15.1 ... DALL-E 2 ... 392
15.2 ... DALL-E 3 ... 397
15.3 ... Programmierschnittstelle ... 399
15.4 ... Übung ... 405

16. Ausblick ... 407
Anhang ... 409

A ... Lösungen ... 409
B ... Literaturhinweise ... 445

Index ... 447