Product details:
ISBN13: | 9780443335402 |
ISBN10: | 04433354011 |
Binding: | Paperback |
No. of pages: | 406 pages |
Size: | 228x152 mm |
Language: | English |
700 |
Category:
Electromagnetic Heterostructures
Background and Calculation Methods
Publisher: Woodhead Publishing
Date of Publication: 1 February 2025
Normal price:
Publisher's listprice:
EUR 213.99
EUR 213.99
Your price:
83 718 (79 732 HUF + 5% VAT )
discount is: 10% (approx 9 302 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Not yet published.
Long description:
Electromagnetic Properties of Heterostructures: Background and Calculation Methods covers the fundamental aspects of the electromagnetic properties of heterostructures and the theoretical knowledge of the computational techniques needed to understand dielectric phenomena in quantitative and physical terms. The book re-establishes the conceptual foundations of the physics associated with numerical simulation tools of the Laplace or the Poisson equations and shows their immediate implementation. It is relevant for all practicing engineers and materials scientists who develop composite materials that are capable of handling specified technological requirements by utilizing their electromagnetic properties.
Table of Contents:
Part 1. Elementary concepts and definitions
1. Maxwell equations and basic electromagnetic theory
2. Polarization in a static electric field
3. Polarization and permittivity in an alternating electric field
Part 2. Analytical approaches
4. Prelude: A historical examination
5. Some preliminary considerations
6. Mixing laws
7. Effective-medium approximation: its basis and formulation
8. Bounds for the homogenization of dielectric composite materials
9. Percolation: Crossing the great divide of bulk heterogeneous matter
10. Reciprocity relations and extensions
Part 3. Computational approaches
11. Some preliminary considerations: the problem in context
12. Finite differences method
13. Finite-difference time-domain propagation
14. Finite element method
15. Integral equation approaches
16. Monte Carlo method
17. Other selected methods
1. Maxwell equations and basic electromagnetic theory
2. Polarization in a static electric field
3. Polarization and permittivity in an alternating electric field
Part 2. Analytical approaches
4. Prelude: A historical examination
5. Some preliminary considerations
6. Mixing laws
7. Effective-medium approximation: its basis and formulation
8. Bounds for the homogenization of dielectric composite materials
9. Percolation: Crossing the great divide of bulk heterogeneous matter
10. Reciprocity relations and extensions
Part 3. Computational approaches
11. Some preliminary considerations: the problem in context
12. Finite differences method
13. Finite-difference time-domain propagation
14. Finite element method
15. Integral equation approaches
16. Monte Carlo method
17. Other selected methods