ISBN13: | 9781032055756 |
ISBN10: | 1032055758 |
Binding: | Paperback |
No. of pages: | 378 pages |
Size: | 234x156 mm |
Weight: | 453 g |
Language: | English |
Illustrations: | 70 Illustrations, black & white; 2 Halftones, black & white; 68 Line drawings, black & white; 42 Tables, black & white |
684 |
Probability and mathematical statistics
Biology in general
Biotechnology
Electrical engineering and telecommunications, precision engineering
Theory of computing, computing in general
Operating systems and graphical user interfaces
Database management softwares
Additional devices
Environmental sciences
General
Economics
Probability and mathematical statistics (charity campaign)
Biology in general (charity campaign)
Biotechnology (charity campaign)
Electrical engineering and telecommunications, precision engineering (charity campaign)
Theory of computing, computing in general (charity campaign)
Operating systems and graphical user interfaces (charity campaign)
Database management softwares (charity campaign)
Additional devices (charity campaign)
Environmental sciences (charity campaign)
General (charity campaign)
Economics (charity campaign)
Gene Expression Data Analysis
GBP 57.99
Click here to subscribe.
Not in stock at Prospero.
The book introduces phenomenal growth of data generated by increasing numbers of genome sequencing projects and other throughput technology-led experimental efforts. It provides information about various sources of gene expression data, and pre-processing, analysis, and validation of such data.
Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge.
Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data.
Key Features:
?
- An introduction to the Central Dogma of molecular biology and information flow in biological systems
- A systematic overview of the methods for generating gene expression data
- Background knowledge on statistical modeling and machine learning techniques
- Detailed methodology of analyzing gene expression data with an example case study
- Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data
- A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns
- Suitable for multidisciplinary researchers and practitioners in computer science and biological sciences
Preface. Acknowledgements. Abstract. Authors. Introduction. Information Flow in Biological Systems. Gene Expression Data Generation. Statistical Foundations and Machine Learning. Co-expression Analysis. Differential Expression Analysis. Tools and Systems. Concluding Remarks and Research Challenges. Index. Glossary.