
- Publisher's listprice EUR 160.49
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 5 446 Ft off)
- Discounted price 62 633 Ft (59 650 Ft + 5% VAT)
68 079 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Springer
- Date of Publication 12 July 2025
- Number of Volumes 1 pieces, Book
- ISBN 9783031874680
- Binding Hardback
- No. of pages400 pages
- Size 235x155 mm
- Language English
- Illustrations Approx. 400 p. 0
Categories
Short description:
Graph minor theory is one of the most influential and well-developed areas of graph theory, yet its key results, particularly the work of Robertson and Seymour, have remained scattered across numerous technical papers. This book fills an important gap by providing a comprehensive, structured treatment of the subject.
Divided into three main parts, the book first introduces the fundamentals of graph minor theory, focusing on the deep and powerful Minor Structure Theorem. It offers a clear roadmap for understanding the theorem’s proof, presenting its key ingredients while omitting only the most technical details. The second part explores a variety of applications, from algorithmic results to connections with the Linear Hadwiger Conjecture and graph coloring problems. The final section presents alternative approaches to graph minor theory that do not rely on the Minor Structure Theorem, covering topics such as sublinear separators, density, and isomorphism testing.
The exposition is rigorous yet accessible, striving to balance depth with readability. While some parts remain dense due to the complexity of the subject, the author provides valuable insights and explanations that make challenging concepts more approachable. The book not only serves as an excellent learning resource for graduate students and researchers entering the field but also as a long-lasting reference for experts.
MoreLong description:
Graph minor theory is one of the most influential and well-developed areas of graph theory, yet its key results, particularly the work of Robertson and Seymour, have remained scattered across numerous technical papers. This book fills an important gap by providing a comprehensive, structured treatment of the subject.
Divided into three main parts, the book first introduces the fundamentals of graph minor theory, focusing on the deep and powerful Minor Structure Theorem. It offers a clear roadmap for understanding the theorem’s proof, presenting its key ingredients while omitting only the most technical details. The second part explores a variety of applications, from algorithmic results to connections with the Linear Hadwiger Conjecture and graph coloring problems. The final section presents alternative approaches to graph minor theory that do not rely on the Minor Structure Theorem, covering topics such as sublinear separators, density, and isomorphism testing.
The exposition is rigorous yet accessible, striving to balance depth with readability. While some parts remain dense due to the complexity of the subject, the author provides valuable insights and explanations that make challenging concepts more approachable. The book not only serves as an excellent learning resource for graduate students and researchers entering the field but also as a long-lasting reference for experts.
MoreTable of Contents:
Chapter 1. Introduction.- Part I. Understanding the structure theorem.- Chapter 2. Tree decompositions and treewidth.- Chapter 3. Linkedness.- Chapter 4. Graphs on surfaces.- Chapter 5. Towards the structure theorem.- Chapter 6. Pointers and sources.- Part II. Using the structure theorem.- Chapter 7. Low-treewidth colorings.- Chapter 8. Tighter grid theorem.- Chapter 9. Topological minors.- Chapter 10. Minors in large connected graphs.- Chapter 11. Sources.- Part III. Avoiding the structure theorem.- Chapter 12. Sublinear separators.- Chapter 13. Chordal partitions.- Chapter 14. Chromatic number.- Chapter 15. Product structure.- Chapter 16. Iterated layerings.- Chapter 17. Isomorphism testing.- Chapter 18. Sources.
More