Handbook of Statistical Methods for Precision Medicine - Laber, Eric; Chakraborty, Bibhas; Moodie, Erica E. M.;(ed.) - Prospero Internet Bookshop

Handbook of Statistical Methods for Precision Medicine
 
Product details:

ISBN13:9781032106151
ISBN10:1032106158
Binding:Hardback
No. of pages:482 pages
Size:254x178 mm
Weight:1260 g
Language:English
Illustrations: 49 Illustrations, black & white; 49 Line drawings, black & white; 30 Tables, black & white
665
Category:

Handbook of Statistical Methods for Precision Medicine

 
Edition number: 1
Publisher: Chapman and Hall
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 190.00
Estimated price in HUF:
96 159 HUF (91 580 HUF + 5% VAT)
Why estimated?
 
Your price:

86 543 (82 422 HUF + 5% VAT )
discount is: 10% (approx 9 616 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

This handbook introduces the foundations of modern statistical approaches to precision medicine, bridging key ideas to active lines of current research in precision medicine. Many contributions are suitable for epidemiologists and clinical researchers with some statistical training.

Long description:

The statistical study and development of analytic methodology for individualization of treatments is no longer in its infancy. Many methods of study design, estimation, and inference exist, and the tools available to the analyst are ever growing. This handbook introduces the foundations of modern statistical approaches to precision medicine, bridging key ideas to active lines of current research in precision medicine.


The contributions in this handbook vary in their level of assumed statistical knowledge; all contributions are accessible to a wide readership of statisticians and computer scientists including graduate students and new researchers in the area. Many contributions, particularly those that are more comprehensive reviews, are suitable for epidemiologists and clinical researchers with some statistical training. The handbook is split into three sections: Study Design for Precision Medicine, Estimation of Optimal Treatment Strategies, and Precision Medicine in High Dimensions.


The first focuses on designed experiments, in many instances, building and extending on the notion of sequential multiple assignment randomized trials. Dose finding and simulation-based designs using agent-based modelling are also featured. The second section contains both introductory contributions and more advanced methods, suitable for estimating optimal adaptive treatment strategies from a variety of data sources including non-experimental (observational) studies. The final section turns to estimation in the many-covariate setting, providing approaches suitable to the challenges posed by electronic health records, wearable devices, or any other settings where the number of possible variables (whether confounders, tailoring variables, or other) is high. Together, these three sections bring together some of the foremost leaders in the field of precision medicine, offering new insights and ideas as this field moves towards its third decade.

Table of Contents:

Preface  Part 1: Study Design For Precision Medicine  1. Adaptive Designs for Precision Medicine: Fundamental Statistical Considerations  2. Small Sample, Sequential, Multiple Assignment, Randomized Trial Design and Analysis  3. Sequential Multiple Assignment Randomized Trial with Adaptive Randomization (SMART-AR) for Mobile Health Devices  4. Bayesian Dose-Finding in Two Treatment Cycles based on Efficacy and Toxicity  5. Agent-Based Modeling in Medical Research ? Example in Health Economics  6. Thompson Sampling for mHealth and Precision Health Applications  Part 2: Estimation of Optimal Treatment Strategies  7. Constructing and Evaluating Optimal Treatment Sequences: An Introductory Guide for Bayesians  8. Measurement Error in Adaptive Treatment Strategies  9. Nonparametric Heterogeneous Treatment Effect Estimation in Repeated Cross Sectional Designs  10. Semiparametric Doubly Robust Targeted Double Machine Learning: A Review  11. Adversarial Monte Carlo Meta-Learning of Conditional Average Treatment Effects  12. Personalized Policy Learning  13. Bandit Algorithms for Precision Medicine  Part 3: Precision Medicine in High Dimensions  14. Tailoring Variable Selection and Ranking for Optimal Treatment Decisions  15. Selecting Optimal Subgroups for Treatment Using Many Covariates  16. Statistical Learning Methods for Estimating Optimal Individualized Treatment Rules from Observational Data  17. Polygenic Risk Prediction for Precision Prevention  18. Post-Selection Inference for Individualized Treatment Rules with Nonparametric Confounding Control  Bibliography