• Contact

  • Newsletter

  • About us

  • Delivery options

  • News

  • 0
    Lectures in Knot Theory: An Exploration of Contemporary Topics

    Lectures in Knot Theory by Przytycki, Józef H.; Bakshi, Rhea Palak; Ibarra, Dionne;

    An Exploration of Contemporary Topics

    Series: Universitext;

      • GET 8% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 58.84
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        24 959 Ft (23 771 Ft + 5% VAT)
      • Discount 8% (cc. 1 997 Ft off)
      • Discounted price 22 963 Ft (21 869 Ft + 5% VAT)

    24 959 Ft

    db

    Availability

    Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
    Not in stock at Prospero.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 2024
    • Publisher Springer
    • Date of Publication 16 March 2024
    • Number of Volumes 1 pieces, Book

    • ISBN 9783031400438
    • Binding Paperback
    • No. of pages520 pages
    • Size 235x155 mm
    • Language English
    • Illustrations 169 Illustrations, black & white; 82 Illustrations, color
    • 706

    Categories

    Short description:

    This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature. Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject. Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics, physics, biology, and chemistry.

    Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject. The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface. The lecture style and array of topical coverage are hoped to inspire independent research and applications of the methods described in the book to other disciplines of science. An introduction to the topology of 3-dimensional manifolds is included in Appendices A and B. Lastly, Appendix C includes a Table of Knots.

    More

    Long description:

    This text is based on lectures delivered by the first author on various, often nonstandard, parts of knot theory and related subjects. By exploring contemporary topics in knot theory including those that have become mainstream, such as skein modules, Khovanov homology and Gram determinants motivated by knots, this book offers an innovative extension to the existing literature. Each lecture begins with a historical overview of a topic and gives motivation for the development of that subject. Understanding of most of the material in the book requires only a basic knowledge of topology and abstract algebra. The intended audience is beginning and advanced graduate students, advanced undergraduate students, and researchers interested in knot theory and its relations with other disciplines within mathematics, physics, biology, and chemistry.

    Inclusion of many exercises, open problems, and conjectures enables the reader to enhance their understanding of the subject. The use of this text for the classroom is versatile and depends on the course level and choices made by the instructor. Suggestions for variations in course coverage are included in the Preface. The lecture style and array of topical coverage are hoped to inspire independent research and applications of the methods described in the book to other disciplines of science. An introduction to the topology of 3-dimensional manifolds is included in Appendices A and B. Lastly, Appendix C includes a Table of Knots.



    ?The book covers a wide range of topics in knot theory, from its origins to its most recent developments. Each chapter is accompanied by exercises of varying difficulty, allowing the reader to gain a deeper understanding of the subjects covered. Depending on the time available and the chapters chosen, the book can serve as an excellent textbook for either a graduate or undergraduate course.? (Valeriano Aiello, zbMATH 1546.57001, 2024)

    More

    Table of Contents:

    1. History of Knot Theory From Ancient Times to Gauss and His Student Listing.- 2. History of Knot Theory From Gauss to Jones.- 3. FROM FOX 3-COLORING TO THE YANG-BAXTER OPERATOR.- 4. Lecture ?: Goeritz and Seifert Matrices.- 5. Chapter Heading.- 6. The HOMFLYPT and the 2-variable Kauffman Polynomial.- 7. Lecture 8: The Temperley - Lieb Algebra and Braid Groups.- 8. Lecture 9: Symmetrizers of Finite Groups and Jones-Wenzl Idempotents.- 9. Lecture 10: Plucking polynomial of rooted trees and its use in knot theory.- 10. Lecture 11: Basics of Skein Modules.- 11. Lecture 12: The Kauffman Bracket Skein Module.- 12. Lecture 13: The Kauffman Bracket Skein Module and Algebra of Surface I-bundles.- 13. Lecture 14: Multiplicative Structure of the Kauffman Bracket Skein Algebra of the Thickened T-Shirt.- 14. Spin Structure and the Framing Skein Module of Links in 3-Manifolds.- 15. Lecture 16: The Witten - Reshetikhin - Turaev Invariant of 3-manifolds.- 16. Lecture 19: Type A Gram determinant.-17. Lecture 18: Gram Determinants of Type B and Type M b.- 18. Lecture 19: Khovanov homology: a categorification of The Jones polynomial.- 19. Lecture 20: Long Exact Sequence of Khovanov Homology and Torsion.- 20. Lecture 21: Categorification of Skein Modules of Twisted I-bundles over surfaces.- Appendix A: Basics of 3-Dimensional Topology. -Appendix B: Surgery on Links in the 3-Sphere and Kirby's Calculus. -Glossary.- SOlutions.

    More