Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems - Luo, Albert C. J.; - Prospero Internet Bookshop

Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems
 
Product details:

ISBN13:9789819726165
ISBN10:9819726166
Binding:Hardback
No. of pages:328 pages
Size:235x155 mm
Language:English
Illustrations: 1 Illustrations, black & white; 49 Illustrations, color
700
Category:

Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems

 
Edition number: 2024
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 171.19
Estimated price in HUF:
74 416 HUF (70 872 HUF + 5% VAT)
Why estimated?
 
Your price:

57 300 (54 571 HUF + 5% VAT )
discount is: 23% (approx 17 116 HUF off)
Discount is valid until: 23 January 2025
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

This book is a monograph about limit cycles and homoclinic networks in polynomial systems. The study of dynamical behaviors of polynomial dynamical systems was stimulated by Hilbert?s sixteenth problem in 1900. Many scientists have tried to work on Hilbert's sixteenth problem, but no significant results have been achieved yet. In this book, the properties of equilibriums in planar polynomial dynamical systems are studied. The corresponding first integral manifolds are determined. The homoclinic networks of saddles and centers (or limit cycles) in crossing-univariate polynomial systems are discussed, and the corresponding bifurcation theory is developed. The corresponding first integral manifolds are polynomial functions. The maximum numbers of centers and saddles in homoclinic networks are obtained, and the maximum numbers of sinks, sources, and saddles in homoclinic networks without centers are obtained as well. Such studies are to achieve global dynamics of planar polynomial dynamical systems, which can help one study global behaviors in nonlinear dynamical systems in physics, chemical reaction dynamics, engineering dynamics, and so on. This book is a reference for graduate students and researchers in the field of dynamical systems and control in mathematics, mechanical, and electrical engineering.

Long description:

This book is a monograph about limit cycles and homoclinic networks in polynomial systems. The study of dynamical behaviors of polynomial dynamical systems was stimulated by Hilbert?s sixteenth problem in 1900. Many scientists have tried to work on Hilbert's sixteenth problem, but no significant results have been achieved yet. In this book, the properties of equilibriums in planar polynomial dynamical systems are studied. The corresponding first integral manifolds are determined. The homoclinic networks of saddles and centers (or limit cycles) in crossing-univariate polynomial systems are discussed, and the corresponding bifurcation theory is developed. The corresponding first integral manifolds are polynomial functions. The maximum numbers of centers and saddles in homoclinic networks are obtained, and the maximum numbers of sinks, sources, and saddles in homoclinic networks without centers are obtained as well. Such studies are to achieve global dynamics of planar polynomial dynamical systems, which can help one study global behaviors in nonlinear dynamical systems in physics, chemical reaction dynamics, engineering dynamics, and so on. This book is a reference for graduate students and researchers in the field of dynamical systems and control in mathematics, mechanical, and electrical engineering.

Table of Contents:

Introduction.- Homoclinic Networks without Centers.- Bifurcations for Homoclinic Networks without Centers.- Homoclinic Networks with Centers.- Bifurcations for Homoclinic Networks with Centers.