• Contact

  • Newsletter

  • About us

  • Delivery options

  • News

  • 0
    Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

    Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics by Kumar, Abhishek; Dubey, Ashutosh Kumar; Anavatti, Sreenatha G.;

    Series: Innovations in Big Data and Machine Learning;

      • GET 10% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice GBP 145.00
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        73 384 Ft (69 890 Ft + 5% VAT)
      • Discount 10% (cc. 7 338 Ft off)
      • Discounted price 66 046 Ft (62 901 Ft + 5% VAT)

    73 384 Ft

    db

    Availability

    Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
    Not in stock at Prospero.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Short description:

    In the last two decades, machine learning has been dramatically developed and is still experiencing a fast and ever-lasting change in paradigm, methodology, applications, and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on the diversity and complexity.

    More

    Long description:

    In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity.


    Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges.


    This book is useful for research scholars and students involved in critical condition analysis and computation models.

    More

    Table of Contents:

    1. Machine Learning in Healthcare. 2. Feature Extraction and Applications of Bio Signals. 3. Machine Learning Methods for Managing Parkinson?s Disease. 4. Challenges of Medical Text and Image Processing. 5. Machine Learning Solutions in Computer-Aided Medical Diagnosis. 6. Rule Learning in Healthcare and Health Services Research. 7. Diagnosis in Medical Imaging. 8. Identifying Diseases and Diagnosis Using Machine Learning. 9. Machine Learning-Based Behavioral Modification. 10. Smart Health Records. 11. Treatment Recommendation System. 12. Smart Health Informatics System. 13. Natural Language Processing Utilization in Healthcare. 14. Clinical Decision Support and Predictive Analytics. 15. Bioinformatics and Biometrics. 16. Human Computer Interfaces and Usability. 17. Education and Capacity Building. 18. Learning Analytics for Competence Assessment. 19. Patient Simulators. 20. Serious Gaming. 21. Patient Empowerment and Engagement. 22. Social Media, Mobile Apps, and Patient Portals. 23. Human Factors and Technology Adoption. 24. Surveillance System. 25. Robotics. 26. Object Detection. 27. Traffic Analysis. 28. Big Data in Healthcare Systems. 29. Advanced Decision-Making and Data Analytics. 30. Emergence of Decision Support Systems. 31. Big Data Based Frameworks and Machine Learning. 32. Predictive Analysis and Modeling. 33. Security and Privacy with Machine Learning Systems. 34. Role of Social Media in Healthcare Analytics. 35. Big Data Based Case Studies for Healthcare Analytics. 36. Machine Learning and Deep Learning Paradigms and Case Studies. 37. Machine Learning in Agriculture.

    More