ISBN13: | 9783662488690 |
ISBN10: | 3662488698 |
Binding: | Paperback |
No. of pages: | 303 pages |
Size: | 235x155 mm |
Weight: | 486 g |
Language: | German |
Illustrations: | 14 Illustrations, color |
0 |
Mathematische Strukturen
EUR 29.99
Click here to subscribe.
Dieses Buch richtet sich an Studierende der Mathematik, die die Anfängervorlesungen in Analysis und Linearer Algebra gemeistert haben. Es ist gedacht als Orientierungshilfe für die Vielzahl an spezialisierten Fachveranstaltungen in den mittleren und höheren Semestern. Ein wichtiges Anliegen ist die Darstellung von Vergleichsmöglichkeiten und Ähnlichkeiten zwischen mathematischen Disziplinen. Das organisierende Prinzip ist der Begriff der mathematischen Struktur, der sich durch alle Teilgebiete der Mathematik zieht.
Die Inhalte, an denen die verschiedenen Typen von Strukturen exemplarisch erläutert werden, decken curriculare Anforderungen insbesondere aus der Algebra und der Geometrie (differentiell und algebraisch) ab. Die Diskussion von Vergleichsmöglichkeiten enthält aber auch Einführungen in die Kategorientheorie und die Garbentheorie, deren Bedeutung in der modernen Mathematik eine stärkere Verankerung in den Curricula nahelegt.
Das Bucheignet sich insbesondere auch zum Nachschlagen der dargestellten Strukturen.
Der Autor: Joachim Hilgert forscht und lehrt am Institut für Mathematik der Universität Paderborn.
Dieses Buch richtet sich an Studierende der Mathematik, die die Anfängervorlesungen in Analysis und Linearer Algebra gemeistert haben. Es ist gedacht als Orientierungshilfe für die Vielzahl an spezialisierten Fachveranstaltungen in den mittleren und höheren Semestern. Ein wichtiges Anliegen ist die Darstellung von Vergleichsmöglichkeiten und Ähnlichkeiten zwischen mathematischen Disziplinen. Das organisierende Prinzip ist der Begriff der mathematischen Struktur, der sich durch alle Teilgebiete der Mathematik zieht.
Die Inhalte, an denen die verschiedenen Typen von Strukturen exemplarisch erläutert werden, decken curriculare Anforderungen insbesondere aus der Algebra und der Geometrie (differentiell und algebraisch) ab. Die Diskussion von Vergleichsmöglichkeiten enthält aber auch Einführungen in die Kategorientheorie und die Garbentheorie, deren Bedeutung in der modernen Mathematik eine stärkere Verankerung in den Curricula nahelegt.
Das Buch eignet sich insbesondere auch zum Nachschlagen der dargestellten Strukturen.?This is a very useful book for students seeking orientation for their further specialization in mathematics. The presentation of the material is utmost lucid, sufficiently detailed, versatile, and didactically refined. As such, this excellent primer is a perfect source for further, more detailed reading, and a highly useful companion for students in general.? (Werner Kleinert, zbMATH 1343.00001, 2016)
I Algebraische Strukturen.- 1 Ringe.- 2 Moduln.- 3 Multilineare Algebra.- 4 Mustererkennung.- II Lokale Strukturen.- 5 Garben.- 6 Mannigfaltigkeiten.- 7 Algebraische Varietäten.- III Ausblick.- 8 Zusatzstrukturen.