Metamaterials: From Linear to Nonlinear Optics - Litchinitser, Natalia M.; Shalaev, Vladimir M.; - Prospero Internet Bookshop

Metamaterials: From Linear to Nonlinear Optics: From Linear to Nonlinear Optics
 
Product details:

ISBN13:9783527408931
ISBN10:3527408932
Binding:Hardback
No. of pages:200 pages
Size:244x170 mm
Language:English
700
Category:

Metamaterials: From Linear to Nonlinear Optics

From Linear to Nonlinear Optics
 
Publisher: Wiley VCH
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 65.00
Estimated price in HUF:
34 125 HUF (32 500 HUF + 5% VAT)
Why estimated?
 
Your price:

30 713 (29 250 HUF + 5% VAT )
discount is: 10% (approx 3 413 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:




  • Metamaterials are artificially created engineered structures with electromagnetic properties unattainable in nature that enable a variety of unusual phenomena and applications



  • Photonic metamaterials are becoming a part of advanced graduate courses (on nanophotonics, plasmonics, etc.

Long description:
Filling a real need for a book that can be used both as a textbook as well as a contemporary reference, this monograph is unique in its focus on the basic theory of linear and nonlinear light?matter interactions in metamaterials. As such, it covers various modern approaches to their design and fabrication, as well as a variety of novel applications enabled by these unusual materials.

Written with a broad audience in mind, ranging from graduate students specializing in physics, optics and electrical engineering, to scientists and engineers conducting active research in nanophotonics or developing novel applications of metamaterials.
Table of Contents:
1. Beyond Imagination of Nature

1.1 Introduction to Metamaterials

1.2 Negative Index Materials (NIMs): Left?Handed Properties

1.3 Superlens

1.4 From Theory to Microwave Experiments

2. Metamaterials: Going Optical

2.1 Magnetism in Optics

2.2 Design Approaches and Principles

2.2.1 Metal?Dielectric Metamaterials

2.2.2 Photonic Crystals

2.2.3 Anisotropic Waveguides

2.2.4 Nano?Transmission Lines

2.2.5 Organic and Uniaxial Gyrotropic Crystals

2.2.6 Atomic Systems

2.3 Electrodynamics of Metal?Dielectric Metamaterials

2.4 Numerical Modeling and Design of NIMs

2.5 Laboratory Realizations of NIMs: Progress and Challenges

3. Nonlinear Metamaterials

3.1 Nonlinear Optics in Magnetic Metamaterials

3.2 Backward Phase?Matching

3.3 Nonlinear NIMs

3.3.1 Second?Harmonic Generation

3.3.2 Optical Parametric Amplification

3.3.3 Guided?Wave Structures: Bistability and Gap Solitons

3.3.4 Layered NIMs Structures

3.3.5 Pulse Propagation and Solitons

4. Graded?Index Optics: Unlimited Opportunities

4.1 Transformation Optics Approach

4.2 Cloaking

4.2.1 Microwave Cloak

4.2.2 Nonmagnetic Cloak

4.2.3 Experimental Progress

4.3 Transitional Phenomena: From Positive to Negative Index Materials

5. Metamaterials: From Fascination to Applications

5.1 Super?resolution

5.2 Photonic Nano?Circuits

5.3 Tunable Metamaterials

5.4 Refractive Index Engineering