Multivariate Analysis and Machine Learning Techniques - Sundararajan, Srikrishnan; - Prospero Internet Bookshop

Multivariate Analysis and Machine Learning Techniques: Feature Analysis in Data Science Using Python
 
Product details:

ISBN13:9789819903528
ISBN10:9819903521
Binding:Hardback
No. of pages:475 pages
Size:235x155 mm
Language:English
Illustrations: 411 Illustrations, black & white; 138 Illustrations, color
700
Category:

Multivariate Analysis and Machine Learning Techniques

Feature Analysis in Data Science Using Python
 
Edition number: 1st ed. 2024
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 85.59
Estimated price in HUF:
36 487 HUF (34 749 HUF + 5% VAT)
Why estimated?
 
Your price:

29 189 (27 799 HUF + 5% VAT )
discount is: 20% (approx 7 297 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

This book offers a comprehensive first-level introduction to data analytics. The book covers multivariate analysis, AI / ML, and other computational techniques for solving data analytics problems using Python. The topics covered include (a) a working introduction to programming with Python for data analytics, (b) an overview of statistical techniques ? probability and statistics,  hypothesis testing, correlation and regression, factor analysis, classification (logistic regression, linear discriminant analysis, decision tree, support vector machines, and other methods), various clustering techniques, and survival analysis, (c) introduction to general computational techniques such as market basket analysis, and social network analysis, and (d) machine learning and deep learning.
  

Many academic textbooks are available for teaching statistical applications using R, SAS, and SPSS. However, there is a dearth of textbooks that provide a comprehensive introduction to the emerging and powerful Python ecosystem, which is pervasive in data science and machine learning applications.   

The book offers a judicious mix of theory and practice, reinforced by over 100 tutorials coded in the Python programming language. The book provides worked-out examples that conceptualize real-world problems using data curated from public domain datasets. It is designed to benefit any data science aspirant, who has a basic (higher secondary school level) understanding of programming and statistics. The book may be used by analytics students for courses on statistics, multivariate analysis, machine learning, deep learning, data mining, and business analytics. It can be also used as a reference book by data analytics professionals.

Long description:
This book offers a comprehensive first-level introduction to data analytics. The book covers multivariate analysis, AI / ML, and other computational techniques for solving data analytics problems using Python. The topics covered include (a) a working introduction to programming with Python for data analytics, (b) an overview of statistical techniques ? probability and statistics,  hypothesis testing, correlation and regression, factor analysis, classification (logistic regression, linear discriminant analysis, decision tree, support vector machines, and other methods), various clustering techniques, and survival analysis, (c) introduction to general computational techniques such as market basket analysis, and social network analysis, and (d) machine learning and deep learning.
  
Many academic textbooks are available for teaching statistical applications using R, SAS, and SPSS. However, there is a dearth of textbooks that provide a comprehensiveintroduction to the emerging and powerful Python ecosystem, which is pervasive in data science and machine learning applications.   

The book offers a judicious mix of theory and practice, reinforced by over 100 tutorials coded in the Python programming language. The book provides worked-out examples that conceptualize real-world problems using data curated from public domain datasets. It is designed to benefit any data science aspirant, who has a basic (higher secondary school level) understanding of programming and statistics. The book may be used by analytics students for courses on statistics, multivariate analysis, machine learning, deep learning, data mining, and business analytics. It can be also used as a reference book by data analytics professionals.

Table of Contents:
Chapter 1: Introduction.- Chapter 2: Python for Data Analytics ? A Quick Tour.- Chapter 3: Probability.- Chapter 4: Statistical Concepts.- Chapter 5: Correlation and Regression.- Chapter 6: Classification.- Chapter 7: Factor Analysis.- Chapter 8: Cluster Analysis.- Chapter 9: Survival Analysis.- Chapter 10: Computational Techniques.- Chapter 11: Machine Learning.