
Non-Newtonian Sequence Spaces with Applications
Series: Chapman & Hall/CRC Monographs and Research Notes in Mathematics;
- Publisher's listprice GBP 165.00
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 10% (cc. 8 351 Ft off)
- Discounted price 75 156 Ft (71 577 Ft + 5% VAT)
83 506 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1
- Publisher Chapman and Hall
- Date of Publication 13 May 2025
- ISBN 9781032988900
- Binding Hardback
- No. of pages202 pages
- Size 254x178 mm
- Language English
- Illustrations 9 Illustrations, black & white; 9 Line drawings, black & white; 11 Tables, black & white 700
Categories
Short description:
Non-Newtonian Sequence Spaces with Applications presents an alternative to the usual calculus based on multiplication instead of addition.
MoreLong description:
Non-Newtonian Sequence Spaces with Applications presents an alternative to the usual calculus based on multiplication instead of addition. This book is intended for graduate students and researchers with a special interest in non-Newtonian calculus, its applications, and related topics.
Key features:
- Valuable material for postgraduate researchers studying non-Newtonian calculus
- Suitable as supplementary reading to a Computational Physics course
Table of Contents:
Preface vii
Acknowledgements ix
List of Abbreviations and Symbols x
1 Sequence and Function Spaces over the Non-newtonian ... 1
1.1 Some Basic Results on the Spaces of Sequences ... . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Preliminaries, background and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Geometric complex field and related properties . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Geometric metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Convergence and completeness in (GC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Sequence spaces over C(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Some Results on Sequence Spaces with ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Preliminaries, backround and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Non-newtonian real field and related properties . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Non-newtonian metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Convergence and completeness in (NC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Sequence Spaces Over the Non-newtonian ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Certain Non-newtonian Complex Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Preliminaries, background and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Some Sequence Spaces and Matrix Transformations in ... . . . . . . . . . . . . . . . . . . . . . . 29
1.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.2 Preliminaries, background and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.3 Characterizations of some matrix classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.4 Multiplicative dual summability methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces 39
2.1 Introduction and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 ?-generator and Geometric Real Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Some useful relations between geometric operations and ordinary arithmetic operations . 40
2.3 Geometric Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Dual Spaces of ?G
?(?G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Geometric form of Abel?s partial summation formula . . . . . . . . . . . . . . . . . . . . 46
2.5 ?-, ?- and ?-duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Some Applications of Geometric Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.1 Geometric Newton-Gregory backward interpolation formula . . . . . . . . . . . . . . . . 53
2.6.2 Advantages of geometric interpolation formulae over ordinary interpolation formulae . . 55
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 Bigeometric Integral Calculus 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Geometric Arithmetic and Geometric Real Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 G-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Some standard G-derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
iv
3.4 G-Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Some standard G-integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Integration by transforming the function to the form ex f?(x)
f(x) . . . . . . . . . . . . . . . . 58
3.4.3 Integration by the relation between G-integral and ordinary integral . . . . . . . . . . . 58
3.4.4 Properties of G-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Definite Bigeometric Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Properties of definite G-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Definite bigeometric integral as a limit of geometric sum . . . . . . . . . . . . . . . . . . 63
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4 Bigeometric Calculus and Its Applications 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Some useful relations between geometric operations and ordinary arithmetic operations . 67
4.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Geometric binomial formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Geometric real number line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Geometric coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Geometric factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Generalized geometric forward difference operator ?n
G . . . . . . . . . . . . . . . . . . . . 69
4.2.6 Generalized Geometric Backward Difference Operator ?n
G . . . . . . . . . . . . . . . . . 69
4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Geometric Pythagorean triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Geometric trigonometric ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Relation between geometric trigonometry and ordinary trigonometry . . . . . . . . . . . 71
4.3.4 Geometric trigonometric identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.5 G-limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.6 G-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Basic Properties of G-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 G-derivative and its interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Relation between G-derivative and ordinary derivative . . . . . . . . . . . . . . . . . . . 77
4.4.3 G-derivatives of some standard functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.4 Geometric Taylor?s series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Some Applications of G-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.1 Expansion of some useful functions in Taylor?s product . . . . . . . . . . . . . . . . . . . 83
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Solution of Bigeometric-Differential Equations by Numerical Methods 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Basic Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.1 Geometric factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Geometric Newton-Gregory formula for forward interpolation . . . . . . . . . . . . . . . 88
5.2.3 Geometric Newton-Gregory formula for backward interpolation . . . . . . . . . . . . . . 88
5.2.4 G-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.5 Some standard G-derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.6 Geometric Taylor?s series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Numerical Methods and Solution of G-Differential Equations . . . . . . . . . . . . . . . . . . . . 89
5.3.1 G-Euler?s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Taylor?s G-series method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.3 G-Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 G-Runge-Kutta method of order four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 Certain Spaces of Functions over the Set of Non-Newtonian Complex Numbers 100
6.1 Preliminaries, Backround and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 The Set of ?-Complex Numbers and ?-Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Continuous Function Space over the Field C? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Multiplicative Type Complex Calculus 110
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Definitions, Methods, and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.1 A multiplicative group, an additive group, and an isomorphism . . . . . . . . . . . . . . 111
7.2.2 Remoteness of two values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.3 Change rate of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.4 Derivative and integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.5 Euler?s simple method in differential equation solving . . . . . . . . . . . . . . . . . . . . 117
7.2.6 Some fundamental theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8 Function Sequences and Series ... 124
8.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 ?-Function Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2.1 ?-function sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2.2 ?-function series and consequences of ?-uniform convergence . . . . . . . . . . . . . . . . 129
8.2.3 ?-uniform convergence and ?-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.4 ?-uniform convergence and ?-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.5 ?-Uniform Convergence and ?-Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9 On Non-newtonian Power Series and its Applications 139
9.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.1 ?-Dirichlet?s and ?-Abel?s tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.2 ?-power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Bibliography 150
Index 153