Oxidative Eustress in Exercise Physiology - Cobley, James N.; Davison, Gareth W.; (ed.) - Prospero Internet Bookshop

Oxidative Eustress in Exercise Physiology
 
Product details:

ISBN13:9780367508777
ISBN10:036750877X
Binding:Paperback
No. of pages:242 pages
Size:254x178 mm
Weight:450 g
Language:English
Illustrations: 14 Illustrations, black & white; 26 Illustrations, color; 14 Line drawings, black & white; 26 Line drawings, color; 6 Tables, black & white
690
Category:

Oxidative Eustress in Exercise Physiology

 
Edition number: 1
Publisher: CRC Press
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 45.99
Estimated price in HUF:
23 516 HUF (22 397 HUF + 5% VAT)
Why estimated?
 
Your price:

18 813 (17 918 HUF + 5% VAT )
discount is: 20% (approx 4 703 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

This book unravels key physiological responses and adaptations to different redox regulated exercise paradigms at the cell, tissue, and whole-body level in model systems and humans in health and disease.

Long description:

Oxidative Eustress in Exercise Physiology unravels key physiological responses and adaptations to different redox-regulated exercise paradigms at the cell, tissue, and whole-body level in model systems and humans in health and disease. While the mechanistic details are still unclear, key intracellular redox indices seem to be dysregulated with age. Consequently, beneficial molecular responses to acute endurance exercise decline in older individuals. Recent research suggests that manipulating mitochondrial redox homeostasis by supplementing with the mitochondria-targeted coenzyme Q10 for six weeks markedly improves physical function in older adults; i.e. it may be possible to maximise the benefits of exercise by manipulating the redox environment. The research described in this book suggests that significant translational potential exists with respect to cardiovascular disease, neurodegeneration and cancer. An international team of researchers documents the importance of redox biology in health and disease, especially when exercise is a clinically useful tool for the treatment of many diseases and conditions.



Features




  • Defines essential redox biology reactions and concepts in exercise physiology



  • Assesses key redox parameters in an in vivo human exercise context



  • Identifies the challenges, opportunities and boundaries of current knowledge



  • Includes a critique of the underlying mechanisms



  • Summarises examples of translationally important research relating to disease states



Related Titles


Draper, N. & H. Marshall. Exercise Physiology for Health and Sports Performance (ISBN 978-0-2737-7872-1)


Wackerhage, H., ed. Molecular Exercise Physiology: An Introduction (ISBN 978-0-4156-0788-9)

Table of Contents:
1. Introduction to Oxidative (Eu)stress in Exercise Physiology. Gareth W. Davison and James N. Cobley. 2. Measuring Oxidative Damage and?Redox?Signalling: Principles, Challenges, and Opportunities. James N. Cobley and Gareth W. Davison. 3. Exercise Redox Signalling: From ROS Sources to Widespread Health Adaptation. Ruy A. Louzada, Jessica Bouviere, Rodrigo S. Fortunato, Denise P. Carvalho. 4. Oxygen transport: a redox O2dyssey. Chatzinikolaou PN, Margaritelis NV, Chatzinikolaou AN, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, Nikolaidis MG. 5. Mitochondrial redox regulation in adaptation to exercise. Christopher?P. Hedges and Troy L. Merry. 6. Basal Redox Status Influences the Adaptive Redox Response to Regular Exercise. Ethan L. Ostrom?and?Tinna?Traustadóttir. 7. Time to ?couple? redox?biology?with?exercise immunology. Alex J Wadley?and Steven J Coles. 8. Exercise and RNA oxidation. Emil List Larsen, Kristian Karstoft, Henrik Enghusen Poulsen. 9. Exercise and?DNA Damage: Considerations for the Nuclear and Mitochondrial Genome. Josh Williamson?and?Gareth W. Davison. 10. Nutritional Antioxidants for Sports Performance. Jamie?N.?Pugh?and?Graeme?L.?Close. 11. Antioxidant?supplements and exercise adaptations. Shaun A. Mason,?Lewan?Parker, Adam J.?Trewin, Glenn D. Wadley. 12. Nitric oxide biochemistry and exercise performance in humans: influence of nitrate supplementation. Stephen J. Bailey?and Andrew M. Jones. 13. (Poly)phenols?in?exercise?performance and recovery - more than an antioxidant? Tom Clifford?and Glyn Howatson. 14. Exercise: a strategy to target oxidative stress in cancer. Amélie Rébillard, Cindy Richard, Suzanne Dufresne. 15. Oxidative Stress and?Exericse?Tolerance in Cystic Fibrosis. Cassandra C.?Derella, Adeola?Sanni, Ryan A.?Harris. 16. Ageing, Neurodegeneration and?Alzheimer?s?Disease ??The?Underlying Role Of Oxidative Distress. Richard J Elsworthy and Sarah?Aldred. 17. Exercise,?Metabolism?and?Oxidative Stress?in?the?Epigenetic?Landscape. Gareth W. Davison and Colum P. Walsh.