Product details:
ISBN13: | 9783031541032 |
ISBN10: | 30315410311 |
Binding: | Hardback |
No. of pages: | 550 pages |
Size: | 235x155 mm |
Language: | English |
Illustrations: | 1 Illustrations, black & white; 26 Illustrations, color |
766 |
Category:
Poisson Hyperplane Tessellations
Series:
Springer Monographs in Mathematics;
Edition number: 2024
Publisher: Springer
Date of Publication: 24 May 2024
Number of Volumes: 1 pieces, Book
Normal price:
Publisher's listprice:
EUR 90.94
EUR 90.94
Your price:
31 014 (29 537 HUF + 5% VAT )
discount is: 20% (approx 7 753 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
Not in stock at Prospero.
Short description:
This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.
Long description:
This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.
Table of Contents:
- 1 Notation.- 2 Hyperplane and particle processes.- 3 Distribution-independent density relations.- 4 Poisson hyperplane processes.- 5 Auxiliary functionals and bodies.- 6 Zero cell and typical cell.- 7 Mixing and ergodicity.- 8 Observations inside a window.- 9 Central limit theorems.- 10 Palm distributions and related constructions.- 11 Typical faces and weighted faces.- 12 Large cells and faces.- 13 Cells with a given number of facets.- 14 Small cells.- 15 The K-cell under increasing intensities.- 16 Isotropic zero cells.- 17 Functionals of Poisson processes and applications.- 18 Appendix: Some auxiliary results.