Product details:
ISBN13: | 9781107048010 |
ISBN10: | 110704801X |
Binding: | Hardback |
No. of pages: | 472 pages |
Size: | 231x150x25 mm |
Weight: | 750 g |
Language: | English |
Illustrations: | 52 b/w illus. |
0 |
Category:
Program Logics for Certified Compilers
Publisher: Cambridge University Press
Date of Publication: 21 April 2014
Normal price:
Publisher's listprice:
GBP 79.99
GBP 79.99
Your price:
37 795 (35 996 HUF + 5% VAT )
discount is: 10% (approx 4 199 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
Not in stock at Prospero.
Short description:
This tutorial for graduate students covers practical and theoretical aspects of separation logic with constructions and proofs in Coq.
Long description:
Separation logic is the twenty-first-century variant of Hoare logic that permits verification of pointer-manipulating programs. This book covers practical and theoretical aspects of separation logic at a level accessible to beginning graduate students interested in software verification. On the practical side it offers an introduction to verification in Hoare and separation logics, simple case studies for toy languages, and the Verifiable C program logic for the C programming language. On the theoretical side it presents separation algebras as models of separation logics; step-indexed models of higher-order logical features for higher-order programs; indirection theory for constructing step-indexed separation algebras; tree-shares as models for shared ownership; and the semantic construction (and soundness proof) of Verifiable C. In addition, the book covers several aspects of the CompCert verified C compiler, and its connection to foundationally verified software analysis tools. All constructions and proofs are made rigorous and accessible in the Coq developments of the open-source Verified Software Toolchain.
Table of Contents:
1. Introduction; Part I. Generic Separation Logic: 2. Hoare logic; 3. Separation logic; 4. Soundness of Hoare logic; 5. Mechanized semantic library Andrew W. Appel, Robert Dockins and Aquinas Hobor; 6. Separation algebras; 7. Operators on separation algebras; 8. First-order separation logic; 9. A little case study; 10. Covariant recursive predicates; 11. Share accounting; Part II. Higher-Order Separation Logic: 12. Separation logic as a logic; 13. From separation algebras to separation logic; 14. Simplification by rewriting; 15. Introduction to step-indexing; 16. Predicate implication and subtyping; 17. General recursive predicates; 18. Case study: separation logic with first-class functions; 19. Data structures in indirection theory; 20. Applying higher-order separation logic; 21. Lifted separation logics; Part III. Separation Logic for CompCert: 22. Verifiable C; 23. Expressions, values, and assertions; 24. The VST separation logic for C light; 25. Typechecking for Verifiable C Josiah Dodds; 26. Derived rules and proof automation for C light; 27. Proof of a program; 28. More C programs; 29. Dependently typed C programs; 30. Concurrent separation logic; Part IV. Operational Semantics of CompCert: 31. CompCert; 32. The CompCert memory model Xavier Leroy, Andrew W. Appel, Sandrine Blazy and Gordon Stewart; 33. How to specify a compiler Lennart Beringer, Robert Dockins and Gordon Stewart; 34. C light operational semantics; Part V. Higher-Order Semantic Models: 35. Indirection theory Aquinas Hobor, Andrew Appel and Robert Dockins; 36. Case study: lambda-calculus with references; 37. Higher-order Hoare logic; 38. Higher-order separation logic; 39. Semantic models of predicates-in-the-heap; Part VI. Semantic Model and Soundness of Verifiable C: 40. Separation algebra for CompCert; 41. Share models; 42. Juicy memories Gordon Stewart and Andrew W. Appel; 43. Modeling the Hoare judgment; 44. Semantic model of CSL; 45. Modular structure of the development; Part VII. Applications: 46. Foundational static analysis; 47. Heap theorem prover Gordon Stewart, Lennart Beringer and Andrew W. Appel.