ISBN13: | 9783031618451 |
ISBN10: | 3031618459 |
Binding: | Hardback |
No. of pages: | 600 pages |
Size: | 254x178 mm |
Language: | English |
Illustrations: | 46 Illustrations, black & white; 198 Illustrations, color |
700 |
Quantification of Biophysical Parameters in Medical Imaging
EUR 213.99
Click here to subscribe.
The second edition of this book offers six new chapters covering the latest developments in quantitative medical imaging, including artificial intelligence, MRI mapping, sonography, elastography and cardiac CT. All the other existing chapters have been updated and expanded, many with new text and figures, to reflect the rapid translation and advancement of technology in this exciting area of biomedical research.
This updated edition presents fundamental knowledge on the imaging quantification of biophysical parameters for clinical diagnostic purposes. Clinical imaging scanners are considered by the authors as physical measurement systems capable of quantifying intrinsic parameters for the representation of the constitution and biophysical properties of tissues in vivo. In one respect, this approach fosters the development of new imaging methods for highly reproducible, system-independent, and quantitative biomarkers. These methods are greatly detailed in the book. Alternatively, this new edition equips the reader with a better understanding of how the physical properties of tissues interact with signal generation in medical imaging, opening up new insights into the complex and fascinating relationship between structure and function in living tissues.
This updated edition is of interest to all those who recognize the limitations of clinical diagnosis based primarily on visual inspection of images, and who wish to learn more about the diagnostic potential of quantitative, biophysically-based medical imaging markers, as well as the challenges posed by the scarcity of such markers for next-generation imaging technologies.
The second edition of this book offers six new chapters covering the latest developments in quantitative medical imaging, including artificial intelligence, MRI mapping, sonography, elastography and cardiac CT. All the other existing chapters have been updated and expanded, many with new text and figures, to reflect the rapid translation and advancement of technology in this exciting area of biomedical research.
This updated edition presents fundamental knowledge on the imaging quantification of biophysical parameters for clinical diagnostic purposes. Clinical imaging scanners are considered by the authors as physical measurement systems capable of quantifying intrinsic parameters for the representation of the constitution and biophysical properties of tissues in vivo. In one respect, this approach fosters the development of new imaging methods for highly reproducible, system-independent, and quantitative biomarkers. These methods are greatly detailed in the book. Alternatively, this new edition equips the reader with a better understanding of how the physical properties of tissues interact with signal generation in medical imaging, opening up new insights into the complex and fascinating relationship between structure and function in living tissues.
This updated edition is of interest to all those who recognize the limitations of clinical diagnosis based primarily on visual inspection of images, and who wish to learn more about the diagnostic potential of quantitative, biophysically-based medical imaging markers, as well as the challenges posed by the scarcity of such markers for next-generation imaging technologies.
1. Introduction.- Part 1. Biological and Physical Fundamentals.- 2. The fundamentals of transport in living tissues quantified by medical imaging technologies.- 3. Mathematical modeling of blood flow in the cardiovascular system.- 4. Equations of motion for biphasic tissue.- 5. Physical Properties of Single Cells and Collective Behavior.- 6. The extracellular matrix as a target for molecular and biophysical magnetic resonance imaging.- Part 2. Medical Imaging Technologies.- 7. Mathematical Methods in Medical Image Processing.- 8. Acceleration strategies for data sampling in MRI.- 9. Machine Learning for Quantitative MR Image Reconstruction.- 10. 4D flow MRI.- 11. New chapter with the tentative title: Quantitative multiparametric mapping MRI.- 12. CEST MRI.- 13. Innovative PET and SPECT Tracers.- 14. Methods and approaches in ultrasound elastography.- 15. Photoacoustic imaging: Principles and Applications.- 16. Fundamentals of X-Ray Computed Tomography: Acquisition and Reconstruction.- Part 3. Applications.- 17. Quantification of Myocardial Effective Transverse Relaxation Time with Magnetic Resonance at 7.0 Tesla for a Better Understanding of Myocardial (Patho)physiology.- 18. Extracellular-matrix-specific molecular MR imaging probes for the assessment of aortic aneurysms.- 19. Diffusion based MRI - imaging basics and clinical applications.- 20. Tumor characterization by ultrasound elastography and contrast-enhanced ultrasound.- 21. Quantitative Bone Ultrasound.- 22. New chapter with the tentative title: Mechanical imaging of the abdonimal aorta.- 23. Sensitivity of tissue shear stiffness to pressure and perfusion in health and disease.- 24. Radionuclide imaging of cerebral blood flow.- 25. Cardiac perfusion MRI.- 26. Myocardial Perfusion Assessment by 3D and 4D Computed Tomography.- 27. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries.- 28. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group.