Product details:
ISBN13: | 9780521493369 |
ISBN10: | 0521493366 |
Binding: | Hardback |
No. of pages: | 352 pages |
Size: | 231x155x25 mm |
Weight: | 600 g |
Language: | English |
Illustrations: | 72 b/w illus. 29 tables |
0 |
Category:
Data management in computer systems
Database management softwares
Artificial Intelligence
Internet services (online shopping, banking)
Television
Data management in computer systems (charity campaign)
Database management softwares (charity campaign)
Artificial Intelligence (charity campaign)
Internet services (online shopping, banking) (charity campaign)
Television (charity campaign)
Recommender Systems
An Introduction
Publisher: Cambridge University Press
Date of Publication: 30 September 2010
Normal price:
Publisher's listprice:
GBP 68.99
GBP 68.99
Your price:
28 222 (26 878 HUF + 5% VAT )
discount is: 20% (approx 7 056 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
Click here to subscribe.
Availability:
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
Not in stock at Prospero.
Short description:
This book introduces different approaches to developing recommender systems that automate choice-making strategies to provide affordable, personal, and high-quality recommendations.
Long description:
In this age of information overload, people use a variety of strategies to make choices about what to buy, how to spend their leisure time, and even whom to date. Recommender systems automate some of these strategies with the goal of providing affordable, personal, and high-quality recommendations. This book offers an overview of approaches to developing state-of-the-art recommender systems. The authors present current algorithmic approaches for generating personalized buying proposals, such as collaborative and content-based filtering, as well as more interactive and knowledge-based approaches. They also discuss how to measure the effectiveness of recommender systems and illustrate the methods with practical case studies. The final chapters cover emerging topics such as recommender systems in the social web and consumer buying behavior theory. Suitable for computer science researchers and students interested in getting an overview of the field, this book will also be useful for professionals looking for the right technology to build real-world recommender systems.
'Behind the modest title of 'An Introduction' lies the type of work the field needs to consolidate its learning and move forward to address new challenges. Across the chapters that follow lie both a tour of what the field knows well - a diverse collection of algorithms and approaches to recommendation - and a snapshot of where the field is today as new approaches derived from social computing and the semantic web find their place in the recommender systems toolbox. Let's all hope this worthy effort spurs yet more creativity and innovation to help recommender systems move forward to new heights.' Joseph A. Konstan, from the Foreword
'Behind the modest title of 'An Introduction' lies the type of work the field needs to consolidate its learning and move forward to address new challenges. Across the chapters that follow lie both a tour of what the field knows well - a diverse collection of algorithms and approaches to recommendation - and a snapshot of where the field is today as new approaches derived from social computing and the semantic web find their place in the recommender systems toolbox. Let's all hope this worthy effort spurs yet more creativity and innovation to help recommender systems move forward to new heights.' Joseph A. Konstan, from the Foreword
Table of Contents:
1. Introduction; Part I. Introduction into Basic Concepts: 2. Collaborative recommendation; 3. Content-based recommendation; 4. Knowledge-based recommendation; 5. Hybrid recommendation approaches; 6. Explanations in recommender systems; 7. Evaluating recommender systems; 8. Case study - personalized game recommendations on the mobile Internet; Part II. Recent Developments: 9. Attacks on collaborative recommender systems; 10. Online consumer decision making; 11. Recommender systems and the next-generation Web; 12. Recommendations in ubiquitous environments; 13. Summary and outlook.