
Role of Antioxidants in Mitigating Plant Stress
Series: Plant Biology, sustainability and climate change;
- Publisher's listprice EUR 186.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 10% (cc. 7 932 Ft off)
- Discounted price 71 388 Ft (67 989 Ft + 5% VAT)
79 321 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Academic Press
- Date of Publication 1 July 2025
- ISBN 9780443267994
- Binding Paperback
- No. of pages450 pages
- Size 234x190 mm
- Language English 700
Categories
Long description:
Role of Antioxidants in Mitigating Plant Stress explores the fundamental roles and mechanistic approaches of antioxidant stress tolerance strategies. With chapters addressing both enzymatic and non-enzymatic antioxidants, it provides a clear guide for understanding plant responses. Presenting current understanding of these components, the book features their role, molecular properties, and reaction mechanisms to various environmental conditions. This book provides an important reference for researchers and advanced level students seeking to improve plant health.
Plants are regularly exposed to various kinds of abiotic and biotic stresses in their natural environmental conditions. These stresses have significant influence on agriculture worldwide and thus, lead to massive economic losses as well as food insecurity. Research has identified many of the effects of, and mitigation techniques for, various stresses that impact plant systems. Strategies for strengthening the antioxidant defense system can increase yields and protect crop plants from a variety of stresses.
Table of Contents:
1. Current understanding of antioxidants and plant productivity: an overview
2. Enzymatic antioxidant defense systems in plants
3. Non-enzymatic antioxidant defense systems in plants
4. ROS/RNS metabolism, signaling in plant defense systems
5. Enzymatic and non-enzymatic antioxidant defense in plants under drought and flooding stress
6. Enzymatic and non-enzymatic antioxidant defense in plants under toxic metals stress
7. Enzymatic and non-enzymatic antioxidant defense in plants under temperature extremes
8. Enzymatic and non-enzymatic antioxidant defense in plants under cold or chilling stress
9. Enzymatic and non-enzymatic antioxidant defense in plants under nutrient deficiency stress
10. Antioxidants acceleration for crop plant leaf physiological features for stress mitigation
11. Coordination of antioxidants and plant hormones for higher plant performance under various stresses
12. Coordination of antioxidants and PGPR for higher plant performance under various stresses
13. Foliar exposure to various chemicals for enhancing the impact of antioxidants in plant stress mitigation
14. Regulation of enzymatic antioxidants and stress-related gene expression in plant system
15. Regulation of non-enzymatic antioxidants and stress-related gene expression in plant system
16. Oxidative stress suppression in plant system and elevation of antioxidant gene expression under diverse stress situations
17. Significance of antioxidants for stress-tolerant transgenic plant development
18. Antioxidants and OMICS prospectives for stress resilience in crop plants
19. Significance of enzymatic and non-enzymatic antioxidant defense systems under various biotic stress situations
20. Omics, transgenics, genome editing and use of AI with reference to stress mitigation in plants
21. Understanding carbon flow from photosynthesis to carbon assimilation with reference to stress mitigation in plants
22. Genome editing for antioxidant-based manipulation for abiotic stress tolerance in plants
23. Abiotic stress-induced regulation of antioxidant enzyme genes using microarray techniques
24. Nanoparticles and abiotic stress: Going deep into the antioxidative enzymatic resistance, signaling, and defense mechanisms in plants
25. Interactions of Oxidative Stress and Ultraviolet-B Radiation in Plant System
26. SMART Plant Breeding utilizing the antioxidant mechanism for Developing Climate-Resilient Cereals