Solid State Chemistry - Moore, Elaine A.; Readman, Jennifer; - Prospero Internet Bookshop

Solid State Chemistry: An Introduction
 
Product details:

ISBN13:9781032728872
ISBN10:1032728876
Binding:Paperback
No. of pages:440 pages
Size:254x178 mm
Weight:453 g
Language:English
Illustrations: 120 Illustrations, black & white; 220 Illustrations, color; 9 Halftones, black & white; 22 Halftones, color; 111 Line drawings, black & white; 198 Line drawings, color; 57 Tables, black & white; 1 Tables, color
700
Category:

Solid State Chemistry

An Introduction
 
Edition number: 6
Publisher: CRC Press
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 48.99
Estimated price in HUF:
25 719 HUF (24 495 HUF + 5% VAT)
Why estimated?
 
Your price:

23 148 (22 046 HUF + 5% VAT )
discount is: 10% (approx 2 572 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials, porous materials for the capture of carbon dioxide and other pollutants.


Long description:

Solid State Chemistry: An Introduction 6th edition is a fully revised edition of one of our most successful textbooks with at least 20% new information and new images of crystal structures. Solid-state chemistry is still a rapidly advancing field, contributing to areas such as batteries for transport and energy storage, nanostructured materials, porous materials for the capture of carbon dioxide and other pollutants. This edition aims, as previously, not only to teach the basic science that underpins the subject, but also to direct the reader to the most modern techniques and to expanding and new areas of research.




  • The user-friendly style takes a largely non-mathematical approach and gives practical examples of applications of solid state materials and concepts.

  • The chapter on sustainability written by an expert in the field has been updated and examples of the relevance of solid state chemistry to sustainability are used throughout.

  • The chapter on batteries has been extended to include fuel cells.

  • Other new topics in this edition include X-ray free electron laser crystallography and thermal properties of materials.

  • A companion website offering accessible resources for students and instructors alike, featuring topics and tools such as quizzes, videos, web links and more has been provided for this edition.

Table of Contents:

Chapter 1 ? An Introduction to Crystal Structures


Jennifer E. Readman and Lesley E. Smart


1.1 Introduction


1.2 Close packing


1.3 Body-centred and Primitive Structures


1.4 Lattices and Unit Cells


1.4.1 Lattices


1.4.2 One- and Two- Dimensional Unit Cells


1.4.3 Three-Dimensional Lattices and Their Unit Cells


1.5 Crystalline solids


1.5.1 Unit cell stoichiometry and Fractional Coordinates


1.5.2 Ionic Solids with Formula MX


1.5.2.1 Caesium Chloride


1.5.2.2 Sodium Chloride


1.5.2.3 Zinc Blende & Wurtzite


1.5.2.4 Nickel Arsenide


1.5.3 Solids with General Formula MX2


1.5.3.1 Fluorite and Anti-Fluorite


1.5.3.2 Cadmium Chloride and Cadmium Iodide


1.5.3.3 Rutile


1.5.3.4 -Cristobalite


1.5.4 Other Important Crystal Structures


1.5.4.1 Rhenium trioxide


1.5.4.2 Perovskite


1.5.4.3 Spinel and Inverse Spinel


1.5.5 Miscellaneous Oxides


1.6 Ionic Radii and the Radius Ratio Rule


1.7 Extended Covalent Arrays


1.8 Molecular Structures


1.9 Lattice Energy


1.9.1 Born-Haber Cycle


1.9.2 Calculating Lattice Enthalpies


1.9.3 Calculations Using Thermodynamic Cycles and Lattice Energies


1.10 Symmetry


1.10.1 Symmetry Notation


1.10.2 Axes of Symmetry


1.10.3 Planes of Symmetry


1.10.4 Inversion


1.10.5 Inversion Axes, Improper Symmetry Axes, and the Identity Element


1.10.6 Operations


1.10.7 Symmetry in Crystals


1.10.8 Translational Symmetry Elements


1.10.9 Space groups


1.11 Miller Indices and Interplanar spacing


1.12 Quasicrystals


Summary.


Questions


Chapter 2 Scattering Techniques for Characterising Solids


Jennifer E. Readman


2.1 Introduction


2.2 X-ray Diffraction


2.2.1 The Generation of X-rays         


2.2.2 Scattering of X-rays & Bragg?s Law


2.2.3 The Diffraction Experiment


2.2.4 The Powder Diffraction Pattern


2.2.5 The Intensity of Diffracted Peaks


2.2.6 The Width of Diffracted Peaks


2.2.7 Rietveld Refinement


2.2.8 Structure & Single-Crystal Diffraction solution


2.3 Synchrotron Radiation


2.3.1 Introduction


2.3.2 Generation of Synchrotron X-rays


2.3.3 Bending Magnets and Insertion Devices


2.4 Neutron Diffraction


2.4.1 Background & Production of Neutrons


2.4.2 Neutron scattering


2.4.3 Experimental Neutron Diffraction


2.4.4 Magnetic Scattering


2.5 Pair Distribution Function Analysis (PDF)


2.5.1 Introduction


2.5.2 Theoretical background


2.5.3 The Total Scattering Experiment


2.6 In-situ Experiments


2.6.1 Variable Temperature


2.6.2 Variable Pressure


2.7 Free Electron Lasers (XFELs)


 2.7.1 Introduction


2.7.2 How XFEL X-rays Are Generated


2.7.3 Typical XFEL Experiments


Appendix Allowed reflections for simple cubic cells


Questions


 


Chapter 3 ? Non-Scattering Characterisation Techniques


Jennifer E. Readman


3.1 Introduction


3.2 Electron Microscopy


3.2.1 Scanning Electron Microscopy (SEM}


3.2.2 Transmission Electron Microscopy (TEM)


3.2.3 Electron Diffraction (ED)


3.2.4 Scanning Transmission Electron Microscopy (STEM)


3.2.5 Energy Dispersive X-Ray Analysis (EDS / EDX)


3.2.6 Electron Energy Loss Spectroscopy (EELS)


3.2.7 Scanning Tunnelling Microscopy (STM) & Atomic Force Microscopy (AFM)


3.3 X-ray Spectroscopy


3.3.1 Introduction


3.3.2 X-ray Fluorescence Spectroscopy (XRF)


3.3.3 X-ray Absorption Spectroscopy


3.3.4 EXAFS


3.3.5 XANES


3.3.6 Experimental XAS


3.3.7 X-ray Photoelectron Spectroscopy (XPS)


3.4 Solid State NMR


3.4.1 Introduction


3.4.2 29-Si MAS NMR


3.4.3 Quadrupolar nuclei


3.5 Surface Area Measurements


3.5.1 Gas Adsorption Isotherms


3.5.2 Classification of Isotherms


3.6 Thermal Analysis


3.6.1 Thermogravimetric analysis (TGA)


3.6.2 Differential Thermal Analysis (DTA)


3.6.3 Differential Scanning Calorimetry (DSC)


3.6.4 Temperature Programmed Reduction (TPR) & Temperature Programmed Desorption (TPD)


Summary for chapters 2 and 3,


Questions


Chapter 4 Synthesis


 Elaine A. Moore and Lesley E. Smart


4.1       Introduction


4.2       High-Temperature Ceramic Methods


4.2.1    Direct Heating of Solids


4.2.2    Precursor Methods


4.2.3    Sol?Gel Methods


4.3.      High-Pressure Methods


4.3.1.   Using High-Pressure Gases


4.3.2.   Using Hydrostatic Pressures


4.4.      Chemical Vapour Deposition


4.4.1.   Preparation of Semiconductors


4.4.2.   Diamond Films


4.4.3    Optical Fibres


4.5.      Preparing Single Crystals


4.5.1    Epitaxy Methods


4.5.2    Chemical Vapour Transport


4.5.3.   Melt Methods


4.5.4    Solution Methods


4.6.      Intercalation


4.7.      Green Chemistry


4.7.1.   Mechanochemical Synthesis


4.7.2.   Microwave Synthesis


4.7.3.   Hydrothermal Methods


4.7.4.   Ultrasound-assisted synthesis


4.7.5 Biological-related methods


4.7. 6. Barium Titanate


4.8.      Choosing a Method


 


 


Chapter 5 Solids:Bonding and Electronic Properties


Elaine A. Moore and Neil Allan


5.2. Bonding in Solids: Free electron theory


5.2.1. Electronic conductivity


5.1 Introduction


5.3. Bonding in Solids: Molecular Orbital Theory


5.3.1. Simple Metals


5.3.2. Group 14 elements


5.4. Semiconductors


5.4.1. Photoconductivity


5.4.2. Doped Semiconductors


5.5. p-n junction and field effect transistors


5.5.1. Flash Memory


5.6. Bands in compounds: Gallium Arsenide


5.7. Bands in d-block compounds: transition metal monoxides


5.8. Superconductivity


5.8.1. BCS Theory of superconductivity


5.8.2. High temperature superconductors: cuprates


5.8.3. Iron superconductors


5.9. Summary


Questions


Chapter 6 Defects and Non-stoichiometry


Elaine A. Moore and Lesley E. Smart


6.1. Introduction


6.2       Point Defects and Their Concentration


6.2.1    Intrinsic Defects


6.2.2    Concentration of Defects


6.2.3    Extrinsic Defects


6.2.4    Defect Nomenclature


6.3       Nonstoichiometric Compounds


6.3.1    Nonstoichiometry in Wüstite (FeO) and MO-Type Oxides


6.3.2    Uranium Dioxide


6.3.3    Titanium Monoxide Structure


6.4       Extended Defects


6.4.1    Crystallographic shear


6.4.2    Planar Intergrowths


6.4.3    Block Structures


6.4.4    Pentagonal Columns


6.4.5    Infinitely Adaptive Structures


6.5       Properties of Nonstoichiometric Oxides


6.5.1. Transition metal monoxides


6.6       Summary


Questions


 


Chapter 7 Batteries and Fuel Cells


Elaine A. Moore and Lesley E. Smart


7.1. Introduction


7.2. Ionic conductivity in solids


7.3. Solid electrolytes


7.3.1 Silver-ion conductors


7.3.2. Lithium-ion conductors


7.3.3. Sodium-ion conductors


7.3.4. Oxide-ion conductors


7.4. Lithium-based batteries


7.5. Sodium-based batteries


7.6. Fuel cells


7.6.1. Solid oxide fuel cells


7.6.2. Proton Exchange Membrane cells


7.7. Summary


Questions


Chapter 8 Microporous and Mesoporous solids


 


Jennifer E. Readman (and Lesley E. Smart ?)


8.1. Introduction


8.2 Silicates


8.3. Zeolites


8.3.1. Background


8.3.2. Composition and Structure of Zeolites.


8.3.3. Zeolite Nomenclature


8.3.4. Si/Al ratios in Zeolites


8.3.5. Exchangeable Cations


8.3.6 Synthesis of Zeolites


8.3.7. Uses of Zeolites


8.4. Zeotypes


8.4.1. Aluminophosphates


8.4.2. Mixed Coordination Metallosilicates


8.5. Metal-Organic Frameworks (MOFs)


8.5.1. Composition and Structure of MOFs


8.5.2. Example MOF Structures


8.5.3.  Breathing MOFs


8.5.4. Synthesis of MOFs


8.5.5. Applications of MOFs


8.6. Zeolite-like MOFs


8.7. Covalent Organic Frameworks


8.8. Mesoporous Silicas


8.9. Clays


Summary


Questions


 


 


 


Chapter Optical 9 and Thermal Properties of Solids


Elaine A. Moore


9.1 Introduction


9.2. Interaction of Light with atoms


9.2.1. Ruby Laser


9.2.2. Phosphors for LEDs


9.3. Colour Centres


9.4. Absorption and Emission of Radiation in Continuous Solids


9.4.1. Gallium Arsenide Laser


9.4.2. Quantum Wells: Blue laser


9.4.3. Light emitting diodes (LEDs)


9.4.4. Photovoltaic (Solar) Cells


9.5. Carbon-based conducting polymers


9.5.1. Polyacetylene


9.5.2. Bonding in Polyacetylene and related polymers


9.5.3 Organic LEDs (QLEDs)


9.6. Refraction


9.6.1. Calcite


9.6.2. Optical Fibres


9.7. Photonic crystals


9.8. Thermal properties of Materials


9.8.1 Heat Capacity


9.8.2. Thermal Energy Storage


9.8.3. Thermal Expansion


9.8.4. Thermal conductivity


9.8.5 Thermal devices


9.9 Summary


Questions


Chapter 10 Magnetic and Electrical Properties


Elaine A. Moore


10.1. Introduction


10.2. Magnetic Susceptibility


10.3. Paramagnetism in metal complexes


10.4. Ferromagnetic Metals


10.4.1. Magnetic Domains


10.4.2 Permanent magnets


10.4.3 Magnetic Shielding


10.5. Ferromagnetic compounds: chromium dioxide


10.6. Antiferromagnetism: transition metal monoxides


10.7. Ferrimagnetism: ferrites


10.7.1. Magnetic strips on swipe cards


10.8. Spiral Magnetism


10.9 Giant, Tunneling and colossal magnetoresistance


10.9.1 Giant Magnetoresistance


10.9.2. Tunneling Magnetoresistance


10.9.3 Car steering angle sensors


10.9.4 Colossal Magnetoresistance: manganites


10.10 Magnetic properties of superconductors


10.11 Electrical Polarisation


10.12. Piezoelectric crystals A-Quartz


10.13 Ferroelectric effect


10.13.1. Capacitors


10.14. Multiferroics


10.14.1. Type 1 multiferroics:bismuth ferrite


10.14.2. Type 2 multiferroics: terbium manganite


10.15. Summary


Questions


Chapter 11 Nanostructures


Elaine A. Moore and Lesley E. Smart


11.1. Introduction


11.2. Consequences of the nanoscale


11.2.1. Nanoparticle morphology


11.2.2. Mechanical Properties


11.2.3 Melting temperature


11.2.4. Electronic properties


11.2.5. Optical Properties


11.2.6 Magnetic Properties


11.3. Nanostructural Carbon


11.3.1. Carbon Black


11.3.2. Graphene


11.3.3. Graphene Oxide


11.3.4. Buckminsterfullerene


11.3.5. Carbon nanotubes


11.4. Noncarbon nanostructures


11.4.1 Fumed Silica


11.4.2. Metal nanoparticles


11.4.3. Non-carbon -ene structures


11.4.4. Other non-carbon nanostructures


11.5. Synthesis of nanostructures


11.5.1 Top-down methods


11.5.2. Bottom-up methods


11.5.3 Synthesis using templates


11.6. Nanostructures in health


11.7. Safety


11.8 Summary


Questions


Chapter 12 Sustainability


Mary Anne White


12.1. Introduction


12.1.1 Definition of Materials Sustainability


12.1.2 Sustainable Materials Chemistry Goals


12.1.3 Materials Dependence in Society


12.1.4 Elemental Abundances


12.1.5 Solid State Chemistry?s Role in Sustainability


12.1.6 Material Life Cycle


12.2 Tools for Sustainable Approaches


 


12.2.1 Green Chemistry


12.2.2 Herfindahl-Hirschman Index (HHI)


12.2.3 Embodied Energy


12.2.4 Exergy


12.2.5 Life Cycle Assessment


12.3 Case Study: Sustainability of a Smartphone


12.4 Theoretical Approaches


12.5 Summary


Questions