Statistical Foundations of Actuarial Learning and its Applications - Wüthrich, Mario V.; Merz, Michael; - Prospero Internet Bookshop

Statistical Foundations of Actuarial Learning and its Applications
 
Product details:

ISBN13:9783031124112
ISBN10:3031124111
Binding:Paperback
No. of pages:605 pages
Size:235x155 mm
Weight:937 g
Language:English
Illustrations: 1 Illustrations, black & white
473
Category:

Statistical Foundations of Actuarial Learning and its Applications

 
Edition number: 1st ed. 2023
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 42.79
Estimated price in HUF:
18 151 HUF (17 287 HUF + 5% VAT)
Why estimated?
 
Your price:

16 699 (15 904 HUF + 5% VAT )
discount is: 8% (approx 1 452 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.

Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  

Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how tointerpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.

Long description:
This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.

Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  



Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.



Table of Contents:
- 1. Introduction. - 2. Exponential Dispersion Family. - 3. Estimation Theory. - 4. Predictive Modeling and Forecast Evaluation. - 5. Generalized Linear Models. - 6. Bayesian Methods, Regularization and Expectation-Maximization. - 7. Deep Learning. - 8. Recurrent Neural Networks. - 9. Convolutional Neural Networks. - 10. Natural Language Processing. - 11. Selected Topics in Deep Learning. - 12. Appendix A: Technical Results on Networks. - 13. Appendix B: Data and Examples.