ISBN13: | 9783031570957 |
ISBN10: | 3031570952 |
Binding: | Hardback |
No. of pages: | 232 pages |
Size: | 235x155 mm |
Language: | English |
Illustrations: | 1 Illustrations, black & white; 42 Illustrations, color |
700 |
Mathematics in engineering and natural sciences
Taxonomy, systematics
Engineering in general
Further readings in the field of computing
Mathematics in engineering and natural sciences (charity campaign)
Taxonomy, systematics (charity campaign)
Engineering in general (charity campaign)
Further readings in the field of computing (charity campaign)
Two-dimensional Self and Product Cubic Systems, Vol. I
EUR 171.19
Click here to subscribe.
This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:
- double-inflection saddles,
- inflection-source (sink) flows,
- parabola-saddles (saddle-center),
- third-order parabola-saddles,
- third-order saddles (centers),
- third-order saddle-source (sink).
- Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;
- Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;
- Shows equilibrium appearing bifurcations of (2,2)-double-inflection saddles and inflection-source (sink) flows.
This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:
- double-inflection saddles,
- inflection-source (sink) flows,
- parabola-saddles (saddle-center),
- third-order parabola-saddles,
- third-order saddles (centers),
- third-order saddle-source (sink).
Crossing and Product cubic Systems.- Double-inflection Saddles and Parabola-saddles.- Three Parabola-saddle Series and Switching Dynamics.- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers.- Equilibrium Networks and Switching with Hyperbolic Flows.