Variationsrechnung - Beck, Lisa; Schmidt, Bernd; - Prospero Internet Bookshop

 
Product details:

ISBN13:9783031591372
ISBN10:3031591372
Binding:Paperback
No. of pages:182 pages
Size:240x168 mm
Language:German
Illustrations: 21 Illustrations, color
700
Category:

Variationsrechnung

 
Edition number: 2024
Publisher: Birkhäuser
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 19.99
Estimated price in HUF:
8 689 HUF (8 275 HUF + 5% VAT)
Why estimated?
 
Your price:

6 951 (6 620 HUF + 5% VAT )
discount is: 20% (approx 1 738 HUF off)
Discount is valid until: 31 December 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Short description:

Dieses Lehrbuch bietet fortgeschrittenen Studierenden im Bachelorstudium eine konzise Einführung in das Gebiet der Variationsrechnung und eignet sich als Grundlage einer einsemestrigen Vorlesung.





Es beginnt mit einigen klassischen Variationsproblemen und Ergebnissen zu Minimalflächen. Der Schwerpunkt liegt jedoch auf den modernen Aspekten der Variationsrechnung. Das Hauptaugenmerk gilt dabei den Variationsintegralen für "vektorwertige Probleme", für die Minimierer mit der "direkten Methode der Variationsrechnung" gesucht werden. Als adäquate Funktionenräume hierfür werden die "Sobolevräume" ausführlich behandelt. Auch die Relaxation solcher Funktionale wird eingehend diskutiert. Schließlich wird eine Einführung in die Theorie der Gamma-Konvergenz bis hin zu aktuellen Anwendungen auf Mehrskalenprobleme gegeben.



 



 



 



 

Long description:

Dieses Lehrbuch bietet fortgeschrittenen Studierenden im Bachelorstudium eine konzise Einführung in das Gebiet der Variationsrechnung und eignet sich als Grundlage einer einsemestrigen Vorlesung.





Es beginnt mit einigen klassischen Variationsproblemen und Ergebnissen zu Minimalflächen. Der Schwerpunkt liegt jedoch auf den modernen Aspekten der Variationsrechnung. Das Hauptaugenmerk gilt dabei den Variationsintegralen für "vektorwertige Probleme", für die Minimierer mit der "direkten Methode der Variationsrechnung" gesucht werden. Als adäquate  Funktionenräume hierfür werden die "Sobolevräume" ausführlich behandelt. Auch die Relaxation solcher Funktionale wird eingehend diskutiert. Schließlich wird eine Einführung in die Theorie der Gamma-Konvergenz bis hin zu aktuellen Anwendungen auf Mehrskalenprobleme gegeben.



 



 

Table of Contents:

Einleitung.- Klassische Theorie in einer Dimension.- Semiklassische Methoden.- Sobolev-Raume.- Vektorwertige Variationsprobleme.- Relaxation.- Konvergenz & Anwendungen.- Anhänge.