Advanced Machine Learning for Cyber-Attack Detection in IoT Networks - Hoang, Dinh Thai; Hieu, Nguyen Quang; Nguyen, Diep N.;(szerk.) - Prospero Internetes Könyváruház

Advanced Machine Learning for Cyber-Attack Detection in IoT Networks
 
A termék adatai:

ISBN13:9780443290329
ISBN10:0443290326
Kötéstípus:Puhakötés
Terjedelem:300 oldal
Méret:235x191 mm
Nyelv:angol
700
Témakör:

Advanced Machine Learning for Cyber-Attack Detection in IoT Networks

 
Kiadó: Academic Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 177.99
Becsült forint ár:
77 372 Ft (73 687 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

69 634 (66 318 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 7 737 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:
Advanced Machine Learning for Cyber-Attack Detection in IoT Networks analyzes diverse machine learning techniques, including supervised, unsupervised, reinforcement, and deep learning, along with their applications in detecting and preventing cyberattacks in future IoT systems. Chapters investigate the key challenges and vulnerabilities found in IoT security, how to handle challenges in data collection and pre-processing specific to IoT environments, as well as what metrics to consider for evaluating the performance of machine learning models. Other sections look at the training, validation, and evaluation of supervised learning models and present case studies and examples that demonstrate the application of supervised learning in IoT security.


  • Presents a comprehensive overview of research on IoT security threats and potential attacks
  • Investigates machine learning techniques, their mathematical foundations, and their application in cybersecurity
  • Presents metrics for evaluating the performance of machine learning models as well as benchmark datasets and evaluation frameworks for assessing IoT systems
Tartalomjegyzék:
1. Machine Learning for Cyber-Attack Detection in IoT Networks: An Overview
2. Evaluation and Performance Metrics for IoT Security Networks
3. Adversarial Machine Learning Techniques for the Industrial IoT Paradigm
4. Federated Learning for Distributed Intrusion Detection in IoT Networks
5. Safeguarding IoT Networks with Generative Adversarial Networks
6. Meta-Learning for Cyber-Attack Detection in IoT Networks
7. Transfer Learning with CNN for Cyberattack Detection in IoT Networks
8. Lightweight Intrusion Detection Methods Based on Artificial Intelligence for IoT Networks
9. A New Federated Learning System with Attention-Aware Aggregation Method for Intrusion Detection Systems
10. Enhancing Intrusion Detection using Improved Sparrow Search Algorithm with Deep Learning on Internet of Things Environment
11. Advancing Cyberattack Detection for In-Vehicle Network: A Comparative Study of Machine Learning-based Intrusion Detection System
12. Practical Approaches Towards IoT Dataset Generation for Security Experiments
13. Challenges and Potential Research Directions for Machine Learning-based Cyber-Attack Detection in IoT Networks