A termék adatai:
ISBN13: | 9789004724136 |
ISBN10: | 9004724133 |
Kötéstípus: | Keménykötés |
Terjedelem: | oldal |
Méret: | 235x155 mm |
Súly: | 1 g |
Nyelv: | angol |
700 |
Témakör:
Akribeia: Certainty and Ontology of Mathematics in Alessandro Piccolomini's De certitudine mathematicarum
Sorozatcím:
History of Metaphysics: Ancient, Medieval, Modern;
6;
Kiadó: BRILL
Megjelenés dátuma: 2025. március 28.
Normál ár:
Kiadói listaár:
EUR 199.00
EUR 199.00
Az Ön ára:
79 585 (75 795 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 6 920 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Rövid leírás:
This book explores Alessandro Piccolomini?s De certitudine mathematicarum (1547). It analyses the history of mathematical certainty and the ontology of mathematics delving into Piccolomini?s ancient and medieval sources. It accounts for Piccolomini?s Neoplatonic foundations in Proclus and Priscian, his philosophy of mechanics, and his critique of mathematical sciences.
Hosszú leírás:
This book provides a comprehensive study of the origins of seminal early modern debates on the certainty and ontology of mathematics. It analyzes Alessandro Piccolomini?s De certitudine mathematicarum (1547), a work that ignited widespread controversy by challenging the scientific status of mathematics. The study delves into Piccolomini?s logical doctrines, his philosophy of mathematics, and his perspectives on the relationship between mechanics and natural philosophy. Special attention is given to Piccolomini?s ancient and medieval sources, the 16th-century rediscovery of Proclus? In Euclidem, and the influence of Priscian?s In De Anima.
Tartalomjegyzék:
Acknowledgements
List of Figures and Tables
1 Introduction
1.1 Mathematical Akribology: a Perennial Question
1.2 Piccolomini?s Intellectual Background to De certitudine
1.3 De certitudine Mathematicarum: Themes and Hermeneutical Keys
1.4 State of the Art
1.5 Reassessing Piccolomini?s Text
1.6 The Map of This Book
2 Piccolomini?s Sources and Context
2.1 Proclus in the Latin Context and Neoplatonic Themes in De certitudine
2.2 Phantasia: Ontology and Epistemology
2.3 Certitudo mathematica: a Historical Inquiry
2.4 Anti-mathematical Attitudes in the 16th-Century Italian Context
2.5 Pseudo-Aristotle?s Quaestiones mechanicae
2.6 Demonstratio potissima
3 De Certitudine Mathematicarum
3.1 Piccolomini?s demonstratio potissima: a Truncated regressus
3.2 Mathematical Analysis and demonstratio potissima
3.3 Euclid?s I.32: Formal Flaws of Mathematical Demonstration
3.4 Quasi ?????????: Piccolomini?s Denial of Mathematical Causality
3.5 Piccolomini?s Philosophy of Mathematics
3.6 Mathematising the Unmathematical: Back to the Mertonian Challenge
3.7 Common Mathematics and De certitudine?s Consistency: a Hypothesis
Conclusions
Appendix
Bibliography
Manuscripts
Primary Sources
Secondary Sources
List of Figures and Tables
1 Introduction
1.1 Mathematical Akribology: a Perennial Question
1.2 Piccolomini?s Intellectual Background to De certitudine
1.3 De certitudine Mathematicarum: Themes and Hermeneutical Keys
1.4 State of the Art
1.5 Reassessing Piccolomini?s Text
1.6 The Map of This Book
2 Piccolomini?s Sources and Context
2.1 Proclus in the Latin Context and Neoplatonic Themes in De certitudine
2.2 Phantasia: Ontology and Epistemology
2.3 Certitudo mathematica: a Historical Inquiry
2.4 Anti-mathematical Attitudes in the 16th-Century Italian Context
2.5 Pseudo-Aristotle?s Quaestiones mechanicae
2.6 Demonstratio potissima
3 De Certitudine Mathematicarum
3.1 Piccolomini?s demonstratio potissima: a Truncated regressus
3.2 Mathematical Analysis and demonstratio potissima
3.3 Euclid?s I.32: Formal Flaws of Mathematical Demonstration
3.4 Quasi ?????????: Piccolomini?s Denial of Mathematical Causality
3.5 Piccolomini?s Philosophy of Mathematics
3.6 Mathematising the Unmathematical: Back to the Mertonian Challenge
3.7 Common Mathematics and De certitudine?s Consistency: a Hypothesis
Conclusions
Appendix
Bibliography
Manuscripts
Primary Sources
Secondary Sources