A termék adatai:
ISBN13: | 9781009001922 |
ISBN10: | 1009001922 |
Kötéstípus: | Puhakötés |
Terjedelem: | 250 oldal |
Méret: | 228x151x13 mm |
Súly: | 360 g |
Nyelv: | angol |
889 |
Témakör:
Algebraic Number Theory for Beginners
Following a Path From Euclid to Noether
Kiadó: Cambridge University Press
Megjelenés dátuma: 2022. augusztus 11.
Normál ár:
Kiadói listaár:
GBP 29.99
GBP 29.99
Az Ön ára:
12 596 (11 996 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 3 149 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
A concise and well-motivated introduction to algebraic number theory, following the evolution of unique prime factorization through history.
Hosszú leírás:
This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
'In Algebraic Number Theory for Beginners, John Stillwell once again displays his remarkable talent for using the history of mathematics to motivate and explore even the most abstract mathematical concepts at an accessible, undergraduate level. This book is another gem of the genre Stillwell has done so much to enhance.' Karen Hunger Parshall, University of Virginia
'In Algebraic Number Theory for Beginners, John Stillwell once again displays his remarkable talent for using the history of mathematics to motivate and explore even the most abstract mathematical concepts at an accessible, undergraduate level. This book is another gem of the genre Stillwell has done so much to enhance.' Karen Hunger Parshall, University of Virginia
Tartalomjegyzék:
Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index.