A termék adatai:
ISBN13: | 9781009415620 |
ISBN10: | 100941562X |
Kötéstípus: | Keménykötés |
Terjedelem: | 578 oldal |
Méret: | 250x175x36 mm |
Súly: | 1150 g |
Nyelv: | angol |
753 |
Témakör:
An Introduction to General Relativity and Cosmology
Kiadás sorszáma: 2
Kiadó: Cambridge University Press
Megjelenés dátuma: 2024. június 6.
Normál ár:
Kiadói listaár:
GBP 69.99
GBP 69.99
Az Ön ára:
33 070 (31 496 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 3 674 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
Experts introduce the tools of GR and relativistic cosmology, guiding advanced students through complete derivations of the results.
Hosszú leírás:
Experts Pleba&&&324;ski and Krasi&&&324;ski provide a thorough introduction to the tools of general relativity and relativistic cosmology. Assuming familiarity with advanced calculus, classical mechanics, electrodynamics and special relativity, the text begins with a short course on differential geometry, taking a unique top-down approach. Starting with general manifolds on which only tensors are defined, the covariant derivative and affine connection are introduced before moving on to geodesics and curvature. Only then is the metric tensor and the (pseudo)-Riemannian geometry introduced, specialising the general results to this case. The main text describes relativity as a physical theory, with applications to astrophysics and cosmology. It takes the reader beyond traditional courses on relativity through in-depth descriptions of inhomogeneous cosmological models and the Kerr metric. Emphasis is given to complete and clear derivations of the results, enabling readers to access research articles published in relativity journals.
Tartalomjegyzék:
The scope of this text; Preface to the second edition; Acknowledgements; 1. How the theory of relativity came into being (a brief historical sketch); Part I. Elements of Differential Geometry: 2. A short sketch of 2-dimensional differential geometry; 3. Tensors, tensor densities; 4. Covariant derivatives; 5. Parallel transport and geodesic lines; 6. The curvature of a manifold; flat manifolds; 7. Riemannian geometry; 8. Symmetries of Riemann spaces, invariance of tensors; 9. Methods to calculate the curvature quickly: differential forms and algebraic computer programs; 10. The spatially homogeneous Bianchi-type spacetimes; 11. The Petrov classification by the spinor method; Part II. The Theory of Gravitation: 12. The Einstein equations and the sources of a gravitational field; 13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory; 14. Spherically symmetric gravitational fields of isolated objects; 15. Relativistic hydrodynamics and thermodynamics; 16. Relativistic cosmology I: general geometry; 17. Relativistic cosmology II: the Robertson-Walker geometry; 18. Relativistic cosmology III: the Lema&&&238;tre-Tolman geometry; 19. Relativistic cosmology IV: Simple generalisations of L-T and related geometries; 20. Relativistic cosmology V: the Szekeres geometries; 21. The Kerr metric; 22 Relativity enters technology: the Global Positioning System; 23. Subjects omitted from this book; 24. Comments to selected exercises and calculations; References; Index.