Analytic Number Theory And Algebraic Asymptotic Analysis - Elliott, Jesse; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9789811280535
ISBN10:9811280533
Kötéstípus:Keménykötés
Terjedelem:420 oldal
Nyelv:angol
700
Témakör:

Analytic Number Theory And Algebraic Asymptotic Analysis

 
Kiadó: World Scientific
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 135.00
Becsült forint ár:
70 875 Ft (67 500 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

65 205 (62 100 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 5 670 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:
This monograph elucidates and extends many theorems and conjectures in analytic number theory and algebraic asymptotic analysis via the natural notions of degree and logexponential degree. The Riemann hypothesis, for example, is equivalent to the statement that the degree of the function ?(x) - li(x) is ?, where ?(x) is the prime counting function and li(x) is the logarithmic integral function. Part 1 of the text is a survey of analytic number theory, Part 2 introduces the notion of logexponential degree and uses it to extend results in algebraic asymptotic analysis, and Part 3 applies the results of Part 2 to the various functions that figure most prominently in analytic number theory.Central to the notion of logexponential degree are G H Hardy's logarithmico-exponential functions, which are real functions defined in a neighborhood of ? that can be built from id, exp, and log using the operations +, ?, /, and °. Such functions are natural benchmarks for the orders of growth of functions in analytic number theory. The main goal of Part 3 is to express the logexponential degree of various functions in analytic number theory in terms of as few 'logexponential primitives' as possible. The logexponential degree of the function e??p?x(1-?p) - ?log x, for example, can be expressed in terms of that of ?(x) - li(x) and vice versa (where ? ? 0.5772 is the Euler-Mascheroni constant), despite the fact that very little is known about the logexponential degree of either function separately, even on condition of the Riemann hypothesis.