ISBN13: | 9781402058646 |
ISBN10: | 14020586411 |
Kötéstípus: | Keménykötés |
Terjedelem: | 409 oldal |
Méret: | 235x155 mm |
Súly: | 822 g |
Nyelv: | angol |
Illusztrációk: | XXIV, 409 p. |
0 |
Valószínűségelmélet és matematikai statisztika
Alkalmazott matematika
A mérnöki tudományok általános kérdései
Vegyészmérnöki tudomány, vegyipar
Gépészmérnöki tudományok
Mechanika
Gázok fizikája
Termodinamika és statisztikus fizika
Valószínűségelmélet és matematikai statisztika (karitatív célú kampány)
Alkalmazott matematika (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
Vegyészmérnöki tudomány, vegyipar (karitatív célú kampány)
Gépészmérnöki tudományok (karitatív célú kampány)
Mechanika (karitatív célú kampány)
Gázok fizikája (karitatív célú kampány)
Termodinamika és statisztikus fizika (karitatív célú kampány)
Analytical Methods for Problems of Molecular Transport
EUR 53.49
Kattintson ide a feliratkozáshoz
A Prosperónál jelenleg nincsen raktáron.
This book is a superb tool in virtually all application areas involving the Kinetic Theory of Gases, Rarefied Gas Dynamics, Transport Theory, and Aerosol Mechanics. It has been especially designed to serve a dual function, both as a teaching instrument either in a classroom environment or at home, and as a reference for scientists and engineers working in the fields of Rarefied Gas Dynamics and Aerosol Mechanics.
From the reviews:
"The aim of the present work is to present a concise ? introduction to the field of transport theory with a fairly tight focus on a few recently successful analytical solution techniques. ? the book is useful as a reference for scientists and engineers working in the fields of rarefied gas dynamics and aerosol mechanics, of working in any applied discipline in which gas-surface interactions can be expected to play a significant role." (Claudia-Veronika Meister, Zentralblatt MATH, Vol. 1141, 2008)
From the contents
Table of Tables. Table of Figures. Preface. Acknowledgments. 1. The General Description of a Rarefied Gas. 2. The Boltzmann Equation. 3. The Collision Operator. 4. The Uniform Steady-State of a Gas. 5. The Non-Uniform State for a Simple Gas. 6. Regimes of Rarefied Gas Flows. 7. The Free-Molecular Regime. 8. Methods of Solution of Planar Problems. 9. The Variational Method for the Planar Geometry. 10. The Slip-Flow Regime. 11. Boundary Value Problems for All Knudsen Numbers. 12. Boundary Slip Phenomena in a Binary Gas Mixture. Appendix 1. Bracket Integrals for the Planar Geometry. Appendix 2. Bracket Integrals for Curvilinear Geometries. Appendix 3. Bracket Integrals for Polynomial Expansion Method. Appendix 4. The Variational Principle for Planar Problems. Appendix 5. Some Definite Integrals. Appendix 6. Omega-Integrals for Second-Order Approximation. References. Author Index. Subject Index.