• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Applied Calculus of Variations for Engineers

    Applied Calculus of Variations for Engineers by Komzsik, Louis;

      • KAPHAT 10% KEDVEZMÉNYT

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 50.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        25 806 Ft (24 577 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 581 Ft off)
      • Discounted price 23 225 Ft (22 119 Ft + 5% áfa)

    Beszerezhetőség

    A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1
    • Kiadó CRC Press
    • Megjelenés dátuma 2008. október 30.

    • ISBN 9781420086621
    • Kötéstípus Keménykötés
    • Terjedelem175 oldal
    • Méret 234x155 mm
    • Súly 431 g
    • Nyelv angol
    • Illusztrációk 25 Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    The subject of calculus of variations is to find optimal solutions to engineering problems where the optimum may be a certain quantity, a shape, or a function. Applied Calculus of Variations for Engineers addresses this very important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts. It is aimed at enhancing the engineer's understanding of the topic as well as aiding in the application of the concepts in a variety of engineering disciplines.

    Több

    Hosszú leírás:

    The subject of calculus of variations is to find optimal solutions to engineering problems where the optimum may be a certain quantity, a shape, or a function. Applied Calculus of Variations for Engineers addresses this very important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts. It is aimed at enhancing the engineer's understanding of the topic as well as aiding in the application of the concepts in a variety of engineering disciplines.



    The first part of the book presents the fundamental variational problem and its solution via the Euler-Lagrange equation. It also discusses variational problems subject to constraints, the inverse problem of variational calculus, and the direct solution techniques of variational problems, such as the Ritz, Galerkin, and Kantorovich methods. With an emphasis on applications, the second part details the geodesic concept of differential geometry and its extensions to higher order spaces. It covers the variational origin of natural splines and the variational formulation of B-splines under various constraints. This section also focuses on analytic and computational mechanics, explaining classical mechanical problems and Lagrange's equations of motion.



    The subject of calculus of variations is to find optimal solutions to engineering problems where the optimum may be a certain quantity, a shape, or a function. Applied Calculus of Variations for Engineers addresses this very important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts. It is aimed at enhancing the engineer's understanding of the topic as well as aiding in the application of the concepts in a variety of engineering disciplines.

    The first part of the book presents the fundamental variational problem and its solution via the Euler-Lagrange equation. It also discusses variational problems subject to constraints, the inverse problem of variational calculus, and the direct solution techniques of variational problems, such as the Ritz, Galerkin, and Kantorovich methods. With an emphasis on applications, the second part details the geodesic concept of differential geometry and its extensions to higher order spaces. It covers the variational origin of natural splines and the variational formulation of B-splines under various constraints. This section also focuses on analytic and computational mechanics, explaining classical mechanical problems and Lagrange's equations of motion.

    Több

    Tartalomjegyzék:

    MATHEMATICAL FOUNDATION


    The Foundations of Calculus of Variations


    The fundamental problem and lemma of calculus of variations


    The Legendre test


    The Euler-Lagrange differential equation


    Application: minimal path problems


    Open boundary variational problems


    Constrained Variational Problems


    Algebraic boundary conditions


    Lagrange's solution


    Application: iso-perimetric problems


    Closed-loop integrals


    Multivariate Functionals


    Functionals with several functions


    Variational problems in parametric form


    Functionals with two independent variables


    Application: minimal surfaces


    Functionals with three independent variables


    Higher Order Derivatives


    The Euler-Poisson equation


    The Euler-Poisson system of equations


    Algebraic constraints on the derivative


    Application: linearization of second order problems


    The Inverse Problem of the Calculus of Variations


    The variational form of Poisson's equation


    The variational form of eigenvalue problems


    Application: Sturm-Liouville problems


    Direct Methods of Calculus of Variations


    Euler's method


    Ritz method


    Galerkin's method


    Kantorovich's method



    ENGINEERING APPLICATIONS


    Differential Geometry


    The geodesic problem


    A system of differential equations for geodesic curves


    Geodesic curvature


    Generalization of the geodesic concept


    Computational Geometry


    Natural splines


    B-spline approximation


    B-splines with point constraints


    B-splines with tangent constraints


    Generalization to higher dimensions


    Analytic Mechanics


    Hamilton's principle for mechanical systems


    Elastic string vibrations


    The elastic membrane


    Bending of a beam under its own weight


    Computational Mechanics


    Three-dimensional elasticity


    Lagrange's equations of motion


    Heat conduction


    Fluid mechanics


    Computational techniques


    Closing Remarks



    References



    Index

    Több