• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle

    Applied Data Science Using PySpark by Kakarla, Ramcharan; Krishnan, Sundar; Dhamodharan, Balaji;

    Learn the End-to-End Predictive Model-Building Cycle

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 64.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 229 Ft (25 932 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 2 178 Ft off)
      • Discounted price 25 050 Ft (23 857 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma Second Edition
    • Kiadó Apress
    • Megjelenés dátuma 2024. december 2.
    • Kötetek száma 1 pieces, Book

    • ISBN 9798868808197
    • Kötéstípus Puhakötés
    • Terjedelem449 oldal
    • Méret 254x178 mm
    • Nyelv angol
    • Illusztrációk 203 Illustrations, black & white
    • 676

    Kategóriák

    Rövid leírás:

    This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade.



    In Chapters 1, 2 & 3, we will get started with setting up the environment, and the basics of PySpark focusing on data manipulations. In Chapter 4, we will dive into the art of Variable Selection where we demonstrate various selection techniques available in PySpark. In Chapters 5, 6 & 7, we take you on the journey of machine learning algorithms, implementations and fine-tuning techniques. Chapters 8 and 9 will walk you through machine learning pipelines, and various methods available to operationalize the model and serve it through docker/API. Chapter 10 will demonstrate how you can unlock the power of predictive models when used in coherence to create a meaningful impact on your business. Chapter 11 will introduce you to some of the most used and powerful modelling frameworks to unlock real value from data.



    In this new edition, you will learn predictive modelling frameworks that can quantify customer lifetime values and estimate the return of your predictive modelling investments. This edition also contains methods to measure engagement and identify actionable populations for churn treatments effectively. In addition, a dedicated chapter for experimentation design including steps to efficiently design, conduct, test and measure the results of your models is added. All the codes will be refreshed as needed to reflect the latest stable version of Spark.



    You will: 




    • Learn the overview of end to end predictive model building

    • Understand Multiple variable selection techniques & implementations

    • Work with Operationalizing models

    • Perform Data science experimentations & tips

    Több

    Hosszú leírás:

    This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data.



     



    In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark.



     



    You will:




    • Gain an overview of end-to-end predictive model building

    • Understand multiple variable selection techniques and their implementations

    • Learn how to operationalize models

    • Perform data science experiments and learn useful tips

    Több

    Tartalomjegyzék:

    Chapter 1: Setting up the Pyspark Environment.- Chapter 2: PySpark Basics .- Chapter 3: Variable Selection.- Chapter 4: Variable Selection.- Chapter 5: Supervised Learning Algorithms.- Chapter 6: Model Evaluation.- Chapter 7: Unsupervised Learning and Recommendation Algorithms.- Chapter 8: Machine Learning Flow and Automated Pipelines.- Chapter 9: Deploying machine learning models.- Chapter 10: Experimentation.- Chapter 11: Modeling Frameworks.

    Több
    Mostanában megtekintett
    previous
    Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle

    Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle

    Kakarla, Ramcharan; Krishnan, Sundar; Dhamodharan, Balaji;

    27 229 Ft

    Latin Language Tests: Mark Schemes: Mark Schemes

    Latin Language Tests: Mark Schemes: Mark Schemes

    Carter, Ashley;

    9 610 Ft

    Genetic Learning for Adaptive Image Segmentation

    Genetic Learning for Adaptive Image Segmentation

    Bhanu, Bir; Sungkee Lee;

    68 079 Ft

    Evolutionary Synthesis of Pattern Recognition Systems

    Evolutionary Synthesis of Pattern Recognition Systems

    Bhanu, Bir; Lin, Yingqiang; Krawiec, Krzysztof;

    68 079 Ft

    Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives

    Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives

    Chapman, Scott; Fontana, Marco; Geroldinger, Alfred;(ed.)

    77 157 Ft

    Practical Aspects of Interview and Interrogation

    Practical Aspects of Interview and Interrogation

    Zulawski, David E.; Wicklander, Douglas E.;

    60 732 Ft

    ReNEUAL Model Rules on EU Administrative Procedure

    ReNEUAL Model Rules on EU Administrative Procedure

    Craig, Paul; Hofmann, Herwig; Schneider, Jens-Peter;(ed.)

    39 475 Ft

    next