Applied Meta-Analysis with R and Stata - Chen, Ding-Geng (Din); Peace, Karl E.; - Prospero Internetes Könyváruház

Applied Meta-Analysis with R and Stata
 
A termék adatai:

ISBN13:9780367183837
ISBN10:0367183838
Kötéstípus:Keménykötés
Terjedelem:456 oldal
Méret:234x156 mm
Súly:1000 g
Nyelv:angol
Illusztrációk: 63 Illustrations, black & white; 23 Tables, black & white
884
Témakör:

Applied Meta-Analysis with R and Stata

 
Kiadás sorszáma: 2, New edition
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 120.00
Becsült forint ár:
63 000 Ft (60 000 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

56 700 (54 000 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 300 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, this book shows how to implement statistical meta-analysis methods to real data using R and Stata.

Hosszú leírás:

Review of the First Edition:


The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis? A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.


?Journal of Applied Statistics


Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.



What?s New in the Second Edition:




  • Adds Stata programs along with the R programs for meta-analysis



  • Updates all the statistical meta-analyses with R/Stata programs



  • Covers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SS



  • Adds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MA



Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.



"The strengths of the second edition continue those of the first edition... A summary and discussion close the chapters, providing professionally generous recommendations for additional reading, software, and websites. Clearly, an applied hands-on approach intended to facilitate quickly moving readers to performing informed meta-data analyses."
- Thomas E. Bradstreet, Journal of Biopharmaceutical Statistics, July 2022

Tartalomjegyzék:
1. Introduction to R and Stata for Meta-Analysis
2. Research Protocol for Meta-Analyses
3. Fixed-E ects and Random-E ects in Meta-Analysis
4. Meta-Analysis with Binary Data
5. Meta-Analysis for Continuous Data
6. Heterogeneity in Meta-Analysis
7. Meta-Regression
8. Multivariate Meta-Analysis
9. Publication Bias in Meta-Analysis
10. Strategies to Handle Missing Data in Meta-Analysis
11. Meta-Analysis for Evaluating Diagnostic Accuracy
12. Network Meta-Analysis
13. Meta-Analysis for Rare Events
14. Meta-Analyses with Individual Patient-Level Data versus Summary Statistics
15. Other R/Stata Packages for Meta-Analysis