Artificial Intelligence Assisted Structural Optimization - Challapalli, Adithya; Li, Guoqiang; - Prospero Internetes Könyváruház

Artificial Intelligence Assisted Structural Optimization
 
A termék adatai:

ISBN13:9781032508856
ISBN10:103250885X
Kötéstípus:Keménykötés
Terjedelem:220 oldal
Méret:229x152 mm
Nyelv:angol
Illusztrációk: 86 Illustrations, black & white; 44 Halftones, black & white; 42 Line drawings, black & white; 15 Tables, black & white
700
Témakör:

Artificial Intelligence Assisted Structural Optimization

 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 110.00
Becsült forint ár:
57 750 Ft (55 000 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

51 975 (49 500 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 5 775 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

Artificial Intelligence Assisted Structural Optimization explores the use of machine learning and correlation analysis within the forward design and inverse design frameworks to design and optimize lightweight load bearing structures as well as mechanical metamaterials.

Hosszú leírás:

Artificial Intelligence Assisted Structural Optimization explores the use of machine learning and correlation analysis within the forward design and inverse design frameworks to design and optimize lightweight load-bearing structures as well as mechanical metamaterials.


Discussing both machine learning and design analysis in detail, this book enables readers to optimize their designs using a data-driven approach. This book discusses the basics of the materials utilized, for example, shape memory polymers, and the manufacturing approach employed, such as 3D or 4D printing. Additionally, the book discusses the use of forward design and inverse design frameworks to discover novel lattice unit cells and thin-walled cellular unit cells with enhanced mechanical and functional properties such as increased mechanical strength, heightened natural frequency, strengthened impact tolerance, and improved recovery stress. Inverse design methodologies using generative adversarial networks are proposed to further investigate and improve these structures. Detailed discussions on fingerprinting approaches, machine learning models, structure screening techniques, and typical Python codes are provided in the book.


The book provides detailed guidance for both students and industry engineers to optimize their structural designs using machine learning.

Tartalomjegyzék:

1. Introduction to Structures with Complex Geometrical Configurations. 2. Structural Optimization. 3. Introduction to Machine Learning-Assisted Structural Optimization. 4. Structural Optimization of Biomimetic Rods Using Machine Learning Regression. 5. Structural Optimization of Lattice Structures. 6. Inverse Machine Learning Using Generative Adversarial Networks. 7. Design and Optimization of Mechanical Metamaterials Using Correlation Analysis. 8. Summary and Future Perspectives.