Artificial Intelligence for Subsurface Characterization and Monitoring - Abubakar, Aria; (szerk.) - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9780443235177
ISBN10:0443235171
Kötéstípus:Puhakötés
Terjedelem:288 oldal
Méret:228x152 mm
Nyelv:angol
700
Témakör:

Artificial Intelligence for Subsurface Characterization and Monitoring

 
Kiadó: Elsevier
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 155.00
Becsült forint ár:
66 076 Ft (62 930 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

52 861 (50 344 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 13 215 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:

Artificial Intelligence for Subsurface Characterization and Monitoring provides an in-depth examination of how deep learning accelerates the process of subsurface characterization and monitoring and provides an end-to-end solution. In recent years, deep learning has been introduced to the geoscience community to overcome some longstanding technical challenges. This book explores some of the most important topics in this discipline to explain the unique capability of deep learning in subsurface characterization for hydrocarbon exploration and production and for energy transition. Readers will discover deep learning methods that can improve the quality and efficiency of many of the key steps in subsurface characterization and monitoring. The text is organized into five parts. The first two parts explore deep learning for data enrichment and well log data, including information extraction from unstructured well reports as well as log data QC and processing. Next is a review of deep learning applied to seismic data and data integration, which also covers intelligent processing for clearer seismic images and rock property inversion and validation. The closing section looks at deep learning in time lapse scenarios, including sparse data reconstruction for reducing the cost of 4D seismic data, time-lapse seismic data repeatability enforcement, and direct property prediction from pre-migration seismic data.

Tartalomjegyzék:
Part I: Deep Learning for Data Enrichment
1. Rejuvenating legacy data by digitizing raster logs
2. Information extraction from unstructured well reports

Part II: Deep learning Applied to Well Log Data
3. Well log data QC and processing: correction, outlier detection, and reconstruction
4. Automatic well marker picking
5. Automatic log interpretation

Part III: Deep learning Applied to Seismic Data
6. Intelligent processing for clearer seismic images
7. Seismic interpretation with improved quality and efficiency

Part IV: Deep learning for Data Integration
8. Automatic seismic-well tie
9. Rock property inversion and validation

Part V: Deep learning in Time Lapse Scenarios
10. Sparse data reconstruction for reducing the cost of 4D seismic data
11. Time-lapse seismic data repeatability enforcement
12. Direct property prediction from pre-migration seismic data