• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Artificial Intelligence: Humans at the Heart of Algorithms

    Artificial Intelligence by Dix, Alan;

    Humans at the Heart of Algorithms

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 49.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        25 299 Ft (24 095 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 530 Ft off)
      • Discounted price 22 770 Ft (21 686 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2
    • Kiadó Chapman and Hall
    • Megjelenés dátuma 2025. június 16.

    • ISBN 9780367515980
    • Kötéstípus Puhakötés
    • Terjedelem417 oldal
    • Méret 280x210 mm
    • Nyelv angol
    • Illusztrációk 276 Illustrations, black & white; 188 Line drawings, black & white; 88 Line drawings, color; 3 Tables, black & white
    • 700

    Kategóriák

    Rövid leírás:

    This new edition expands and revises the book throughout, with new material added to existing chapters, including short case studies, as well as adding new chapters on explainable AI, and big data. 

    Több

    Hosszú leírás:

    An authoritative and accessible one-stop resource, the first edition of An Introduction to Artificial Intelligence presented one of the first comprehensive examinations of AI. Designed to provide an understanding of the foundations of artificial intelligence, it examined the central computational techniques employed by AI, including knowledge representation, search, reasoning and learning, as well as the principal application domains of expert systems, natural language, vision, robotics, software agents and cognitive modelling. Many of the major philosophical and ethical issues of AI were also introduced. This new edition expands and revises the book throughout, with new material to augment existing chapters, including short case studies, as well as adding new chapters on explainable AI, big data and deep learning, temporal and web-scale data, statistical methods and data wrangling. It expands the book?s focus on human-centred AI, covering gender, ethnic and social bias, the need for transparency, intelligent user interfaces, and designing interactions to aid machine learning. With detailed, well-illustrated examples and exercises throughout, this book provides a substantial and robust introduction to artificial intelligence in a clear and concise coursebook form. It stands as a core text for all students and computer scientists approaching AI.


    You can also visit the author website for further resources: https://alandix.com/aibook/.



    "This vital and erudite work of scholarship provides a lucid account of how artificial intelligence works, illuminating both the deepest fears of AI?s Cassandras and the wildest hopes of its Pollyannas. It will be an essential resource for anyone serious about understanding both the risks and opportunities of the AI revolution. The book provides a comprehensive and insightful overview of rapidly developing fields, explaining technical issues with engaging clarity. Specialists will value the meticulous detail and rigour while general readers will appreciate the rich and concise overviews. It makes clear the complexity of challenges like algorithmic bias, AI ethics and privacy, but also reviews promising approaches like explainable AI and artificial emotion. The intriguing exercises at the end of each section will inspire anyone teaching or studying Human-AI interaction. Whether exploring probabilistic reasoning or the philosophy of consciousness, the authors are sure and helpful guides.  This is everything you wanted to know about AI but were afraid to ask for fear of revealing your shameful ignorance."
    --Mark Blythe, Professor of Design and Creative Lead for AI, Northumbria University, UK


    "Artificial Intelligence is often discussed in terms of algorithms, models, and computation, but at its core, it is a deeply human endeavour. In Artificial Intelligence: Humans at the Heart of Algorithms, Alan Dix masterfully navigates the landscape of AI, balancing the technical depth of the field with a keen awareness of its impact on people and society. Through a rigorous yet accessible exploration of knowledge-based AI, machine learning, and human-centred interaction, this book provides an essential guide for students, researchers, and practitioners alike. It is a must-read for anyone seeking to understand not just how AI works, but how it should work?for and with humans."


    --Alessio Malizia, Professor, Head of Digital Humanities and Head of the Data-Driven Design Lab, University of Pisa, Italy and Molde University College, Faculty of Logistics, Molde, Norway

    Több

    Tartalomjegyzék:

    List of Figures xxv


    Preface xxxv


    Author Bio xxxvii


    Chapter 1 ? Introduction 1


    1.1 WHAT IS ARTIFICIAL INTELLIGENCE? 1


    1.1.1 How much like a human: strong vs. weak AI 1


    1.1.2 Top-down or bottom-up: symbolic vs. sub-symbolic 2


    1.1.3 A working definition 3


    1.1.4 Human intelligence 3


    1.1.5 Bottom up and top down 4


    1.2 HUMANS AT THE HEART 4


    1.3 A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE 5


    1.3.1 The development of AI 6


    1.3.2 The physical symbol system hypothesis 8


    1.3.3 Sub-symbolic spring 9


    1.3.4 AI Renaissance 10


    1.3.5 Moving onwards 11


    1.4 STRUCTURE OF THIS BOOK ? A LANDSCAPE OF AI 11


    Section I Knowledge-Rich AI


    Chapter 2 ? Knowledge in AI 15


    2.1 OVERVIEW 15


    2.2 INTRODUCTION 15


    2.3 REPRESENTING KNOWLEDGE 16


    2.4 METRICS FOR ASSESSING KNOWLEDGE REPRESENTATION SCHEMES


    19


    2.5 LOGIC REPRESENTATIONS 20


    2.6 PROCEDURAL REPRESENTATION 23


    vii


    viii ? Contents


    2.6.1 The database 23


    2.6.2 The production rules 23


    2.6.3 The interpreter 24


    2.6.4 An example production system: making a loan 24


    2.7 NETWORK REPRESENTATIONS 26


    2.8 STRUCTURED REPRESENTATIONS 28


    2.8.1 Frames 29


    2.8.2 Scripts 29


    2.9 GENERAL KNOWLEDGE 31


    2.10 THE FRAME PROBLEM 32


    2.11 KNOWLEDGE ELICITATION 33


    2.12 SUMMARY 33


    Chapter 3 ? Reasoning 37


    3.1 OVERVIEW 37


    3.2 WHAT IS REASONING? 37


    3.3 FORWARD AND BACKWARD REASONING 39


    3.4 REASONING WITH UNCERTAINTY 40


    3.4.1 Non-monotonic reasoning 40


    3.4.2 Probabilistic reasoning 41


    3.4.3 Certainty factors 43


    3.4.4 Fuzzy reasoning 45


    3.4.5 Reasoning by analogy 46


    3.4.6 Case-based reasoning 46


    3.5 REASONING OVER NETWORKS 48


    3.6 CHANGING REPRESENTATIONS 51


    3.7 SUMMARY 51


    Chapter 4 ? Search 53


    4.1 INTRODUCTION 53


    4.1.1 Types of problem 53


    4.1.2 Structuring the search space 57


    4.2 EXHAUSTIVE SEARCH AND SIMPLE PRUNING 63


    4.2.1 Depth and breadth first search 63


    4.2.2 Comparing depth and breadth first searches 65


    4.2.3 Programming and space costs 67


    4.2.4 Iterative deepening and broadening 68


    Contents ? ix


    4.2.5 Finding the best solution ? branch and bound 69


    4.2.6 Graph search 70


    4.3 HEURISTIC SEARCH 70


    4.3.1 Hill climbing andbest first ? goal-directed search 72


    4.3.2 Finding the best solution ? the A? algorithm 72


    4.3.3 Inexact search 75


    4.4 KNOWLEDGE-RICH SEARCH 77


    4.4.1 Constraint satisfaction 78


    4.5 SUMMARY 80


    Section II Data and Learning


    Chapter 5 ? Machine learning 85


    5.1 OVERVIEW 85


    5.2 WHY DO WE WANT MACHINE LEARNING? 85


    5.3 HOW MACHINES LEARN 87


    5.3.1 Phases of machine learning 87


    5.3.2 Rote learning and the importance of generalization 89


    5.3.3 Inputs to training 90


    5.3.4 Outputs of training 91


    5.3.5 The training process 92


    5.4 DEDUCTIVE LEARNING 93


    5.5 INDUCTIVE LEARNING 94


    5.5.1 Version spaces 95


    5.5.2 Decision trees 99


    5.5.2.1 Building a binary tree 99


    5.5.2.2 More complex trees 102


    5.5.3 Rule induction and credit assignment 103


    5.6 EXPLANATION-BASED LEARNING 104


    5.7 EXAMPLE: QUERY-BY-BROWSING 105


    5.7.1 What the user sees 105


    5.7.2 How it works 105


    5.7.3 Problems 107


    5.8 SUMMARY 107


    Chapter 6 ? Neural Networks 109


    6.1 OVERVIEW 109


    x ? Contents


    6.2 WHY USE NEURAL NETWORKS? 109


    6.3 THE PERCEPTRON 110


    6.3.1 The XOR problem 112


    6.4 THE MULTI-LAYER PERCEPTRON 113


    6.5 BACKPROPAGATION 114


    6.5.1 Basic principle 115


    6.5.2 Backprop for a single layer network 116


    6.5.3 Backprop for hidden layers 117


    6.6 ASSOCIATIVE MEMORIES 117


    6.6.1 Boltzmann Machines 119


    6.6.2 Kohonen self-organizing networks 121


    6.7 LOWER-LEVEL MODELS 122


    6.7.1 Cortical layers 122


    6.7.2 Inhibition 123


    6.7.3 Spiking neural networks 123


    6.8 HYBRID ARCHITECTURES 124


    6.8.1 Hybrid layers 124


    6.8.2 Neurosymbolic AI 125


    6.9 SUMMARY 126


    Chapter 7 ? Statistical and Numerical Techniques 129


    7.1 OVERVIEW 129


    7.2 LINEAR REGRESSION 129


    7.3 VECTORS AND MATRICES 132


    7.4 EIGENVALUES AND PRINCIPAL COMPONENTS 134


    7.5 CLUSTERING AND K-MEANS 136


    7.6 RANDOMNESS 138


    7.6.1 Simple statistics 138


    7.6.2 Distributions and long-tail data 140


    7.6.3 Least squares 142


    7.6.4 Monte Carlo techniques 142


    7.7 NON-LINEAR FUNCTIONS FOR MACHINE LEARNING 144


    7.7.1 Support Vector Machines 144


    7.7.2 Reservoir Computing 145


    7.7.3 Kolmogorov-Arnold Networks 146


    7.8 SUMMARY 147


    Contents ? xi


    Chapter 8 ? Going Large: deep learning and big data 151


    8.1 OVERVIEW 151


    8.2 DEEP LEARNING 152


    8.2.1 Why are many layers so difficult? 153


    8.2.2 Architecture of the layers 153


    8.3 GROWING THE DATA 156


    8.3.1 Modifying real data 157


    8.3.2 Virtual worlds 157


    8.3.3 Self learning 157


    8.4 DATA REDUCTION 158


    8.4.1 Dimension reduction 159


    8.4.1.1 Vector space techniques 159


    8.4.1.2 Non-numeric features 160


    8.4.2 Reduce total number of data items 161


    8.4.2.1 Sampling 161


    8.4.2.2 Aggregation 161


    8.4.3 Segmentation 162


    8.4.3.1 Class segmentation 162


    8.4.3.2 Result recombination 162


    8.4.3.3 Weakly-communicating partial analysis 163


    8.5 PROCESSING BIG DATA 164


    8.5.1 Why it is hard ? distributed storage and computation 164


    8.5.2 Principles behind MapReduce 165


    8.5.3 MapReduce for the cloud 166


    8.5.4 If it can go wrong ? resilience for big processing 167


    8.6 DATA AND ALGORITHMS AT SCALE 169


    8.6.1 Big graphs 169


    8.6.2 Time series and event streams 170


    8.6.2.1 Multi-scale with mega-windows 170


    8.6.2.2 Untangling streams 171


    8.6.2.3 Real-time processing 171


    8.7 SUMMARY 171


    Chapter 9 ? Making Sense of Machine Learning 175


    9.1 OVERVIEW 175


    9.2 THE MACHINE LEARNING PROCESS 175


    xii ? Contents


    9.2.1 Training phase 176


    9.2.2 Application phase 177


    9.2.3 Validation phase 177


    9.3 EVALUATION 178


    9.3.1 Measures of effectiveness 178


    9.3.2 Precision?recall trade-off 180


    9.3.3 Data for evaluation 182


    9.3.4 Multi-stage evaluation 182


    9.4 THE FITNESS LANDSCAPE 183


    9.4.1 Hill-climbing and gradient descent / ascent 183


    9.4.2 Local maxima and minima 184


    9.4.3 Plateau and ridge effects 185


    9.4.4 Local structure 186


    9.4.5 Approximating the landscape 186


    9.4.6 Forms of fitness function 187


    9.5 DEALING WITH COMPLEXITY 188


    9.5.1 Degrees of freedom and dimension reduction 188


    9.5.2 Constraints and dependent features 189


    9.5.3 Continuity and learning 191


    9.5.4 Multi-objective optimisation 193


    9.5.5 Partially labelled data 194


    9.6 SUMMARY 196


    Chapter 10 ?Data Preparation 199


    10.1 OVERVIEW 199


    10.2 STAGES OF DATA PREPARATION 199


    10.3 CREATING A DATASET 200


    10.3.1 Extraction and gathering of data 200


    10.3.2 Entity reconciliation and linking 201


    10.3.3 Exception sets 202


    10.4 MANIPULATION AND TRANSFORMATION OF DATA 202


    10.4.1 Types of data value 203


    10.4.2 Transforming to the right kind of data 204


    10.5 NUMERICAL TRANSFORMATIONS 205


    10.5.1 Information 205


    10.5.2 Normalising data 207


    Contents ? xiii


    10.5.3 Missing values ? filling the gaps 207


    10.5.4 Outliers ? dealing with extremes 209


    10.6 NON-NUMERIC TRANSFORMATIONS 211


    10.6.1 Media data 211


    10.6.2 Text 212


    10.6.3 Structure transformation 214


    10.7 AUTOMATION AND DOCUMENTATION 214


    10.8 SUMMARY 216


    Section III Specialised Areas


    Chapter 11 ?Game playing 221


    11.1 OVERVIEW 221


    11.2 INTRODUCTION 221


    11.3 CHARACTERISTICS OF GAME PLAYING 223


    11.4 STANDARD GAMES 225


    11.4.1 A simple game tree 225


    11.4.2 Heuristics and minimax search 225


    11.4.3 Horizon problems 227


    11.4.4 Alpha?beta pruning 228


    11.4.5 The imperfect opponent 229


    11.5 NON-ZERO-SUM GAMES AND SIMULTANEOUS PLAY 229


    11.5.1 The prisoner?s dilemma 230


    11.5.2 Searching the game tree 230


    11.5.3 No alpha?beta pruning 232


    11.5.4 Pareto-optimality 232


    11.5.5 Multi-party competition and co-operation 233


    11.6 THE ADVERSARY IS LIFE! 233


    11.7 PROBABILITY 235


    11.8 NEURAL NETWORKS FOR GAMES 236


    11.8.1 Where to use a neural network 236


    11.8.2 Training data and self play 238


    11.9 SUMMARY 238


    Chapter 12 ?Computer vision 243


    12.1 OVERVIEW 243


    12.2 INTRODUCTION 243


    xiv ? Contents


    12.2.1 Why computer vision is difficult 243


    12.2.2 Phases of computer vision 244


    12.3 DIGITIZATION AND SIGNAL PROCESSING 245


    12.3.1 Digitizing images 245


    12.3.2 Thresholding 246


    12.3.3 Digital filters 248


    12.3.3.1 Linear filters 249


    12.3.3.2 Smoothing 249


    12.3.3.3 Gaussian filters 251


    12.3.3.4 Practical considerations 252


    12.4 EDGE DETECTION 252


    12.4.1 Identifying edge pixels 253


    12.4.1.1 Gradient operators 253


    12.4.1.2 Robert?s operator 253


    12.4.1.3 Sobel?s operator 256


    12.4.1.4 Laplacian operator 257


    12.4.1.5 Successive refinement and Marr?s primal sketch 258


    12.4.2 Edge following 259


    12.5 REGION DETECTION 260


    12.5.1 Region growing 261


    12.5.2 The problem of texture 261


    12.5.3 Representing regions ? quadtrees 262


    12.5.4 Computational problems 263


    12.6 RECONSTRUCTING OBJECTS 263


    12.6.1 Inferring three-dimensional features 263


    12.6.1.1 Problems with labelling 266


    12.6.2 Using properties of regions 267


    12.7 IDENTIFYING OBJECTS 269


    12.7.1 Using bitmaps 269


    12.7.2 Using summary statistics 270


    12.7.3 Using outlines 271


    12.7.4 Using paths 272


    12.8 FACIAL AND BODY RECOGNITION 273


    12.9 NEURAL NETWORKS FOR IMAGES 276


    12.9.1 Convolutional neural networks 276


    12.9.2 Autoencoders 277


    Contents ? xv


    12.10 GENERATIVE ADVERSARIAL NETWORKS 279


    12.10.1 Generated data 279


    12.10.2 Diffusion models 280


    12.10.3 Bottom-up and top-down processing 281


    12.11 MULTIPLE IMAGES 281


    12.11.1 Stereo vision 282


    12.11.2 Moving pictures 284


    12.12 SUMMARY 285


    Chapter 13 ?Natural language understanding 289


    13.1 OVERVIEW 289


    13.2 WHAT IS NATURAL LANGUAGE UNDERSTANDING? 289


    13.3 WHY DO WE NEED NATURAL LANGUAGE UNDERSTANDING? 290


    13.4 WHY IS NATURAL LANGUAGE UNDERSTANDING DIFFICULT? 290


    13.5 AN EARLY ATTEMPT AT NATURAL LANGUAGE UNDERSTANDING:


    SHRDLU 292


    13.6 HOW DOES NATURAL LANGUAGE UNDERSTANDING WORK? 293


    13.7 SYNTACTIC ANALYSIS 295


    13.7.1 Grammars 296


    13.7.2 An example: generating a grammar fragment 297


    13.7.3 Transition networks 299


    13.7.4 Context-sensitive grammars 302


    13.7.5 Feature sets 303


    13.7.6 Augmented transition networks 304


    13.7.7 Taggers 304


    13.8 SEMANTIC ANALYSIS 305


    13.8.1 Semantic grammars 306


    13.8.1.1 An example: a database query interpreter revisited 306


    13.8.2 Case grammars 307


    13.9 PRAGMATIC ANALYSIS 310


    13.9.1 Speech acts 311


    13.10 GRAMMAR-FREE APPROACHES 311


    13.10.1 Template matching 311


    13.10.2 Keyword matching 312


    13.10.3 Predictive methods 312


    13.10.4 Statistical methods 313


    13.11 SUMMARY 314


    xvi ? Contents


    13.12 SOLUTION TO SHRDLU PROBLEM 315


    Chapter 14 ?Time Series and Sequential Data 317


    14.1 OVERVIEW 317


    14.2 GENERAL PROPERTIES 317


    14.2.1 Kinds of temporal and sequential data 317


    14.2.2 Looking through time 318


    14.2.3 Processing temporal data 320


    14.2.3.1 Windowing 320


    14.2.3.2 Hidden state 321


    14.2.3.3 Non-time domain transformations 321


    14.3 PROBABILITY MODELS 322


    14.3.1 Markov Model 323


    14.3.2 Higher-order Markov Model 324


    14.3.3 Hidden Markov Model 326


    14.4 GRAMMAR AND PATTERN-BASED APPROACHES 327


    14.4.1 Regular expressions 327


    14.4.2 More complex grammars 328


    14.5 NEURAL NETWORKS 329


    14.5.1 Window-based methods 329


    14.5.2 Recurrent Neural Networks 331


    14.5.3 Long-term short-term memory networks 332


    14.5.4 Transformer models 332


    14.6 STATISTICAL AND NUMERICAL TECHNIQUES 332


    14.6.1 Simple data cleaning techniques 333


    14.6.2 Logarithmic transformations and exponential growth 334


    14.6.3 ARMA models 335


    14.6.4 Mixed statistics/ML models 336


    14.7 MULTI-STAGE/SCALE 337


    14.8 SUMMARY 339


    Chapter 15 ?Planning and robotics 343


    15.1 OVERVIEW 343


    15.2 INTRODUCTION 343


    15.2.1 Friend or foe? 343


    15.2.2 Different kinds of robots 344


    15.3 GLOBAL PLANNING 345


    Contents ? xvii


    15.3.1 Planning actions ? means?ends analysis 345


    15.3.2 Planning routes ? configuration spaces 348


    15.4 LOCAL PLANNING 350


    15.4.1 Local planning and obstacle avoidance 350


    15.4.2 Finding out about the world 353


    15.5 LIMBS, LEGS AND EYES 356


    15.5.1 Limb control 356


    15.5.2 Walking ? on one, two or more legs 359


    15.5.3 Active vision 361


    15.6 PRACTICAL ROBOTICS 363


    15.6.1 Controlling the environment 363


    15.6.2 Safety and hierarchical control 364


    15.7 SUMMARY 365


    Chapter 16 ?Agents 369


    16.1 OVERVIEW 369


    16.2 SOFTWARE AGENTS 369


    16.2.1 The rise of the agent 370


    16.2.2 Triggering actions 371


    16.2.3 Watching and learning 372


    16.2.4 Searching for information 374


    16.3 REINFORCEMENT LEARNING 376


    16.3.1 Single step learning 376


    16.3.2 Choices during learning 378


    16.3.3 Intermittent rewards and credit assignment 379


    16.4 COOPERATING AGENTS AND DISTRIBUTED AI 379


    16.4.1 Blackboard architectures 380


    16.4.2 Distributed control 382


    16.5 LARGER COLLECTIVES 383


    16.5.1 Emergent behaviour 383


    16.5.2 Cellular automata 384


    16.5.3 Artificial life 384


    16.5.4 Swarm computing 385


    16.5.5 Ensemble methods 386


    16.6 SUMMARY 388


    Chapter 17 ?Web scale reasoning 391


    xviii ? Contents


    17.1 OVERVIEW 391


    17.2 THE SEMANTIC WEB 391


    17.2.1 Representing knowledge ? RDF and triples 392


    17.2.2 Ontologies 394


    17.2.3 Asking questions ? SPARQL 395


    17.2.4 Talking about RDF ? reification, named graphs and provenance


    396


    17.2.5 Linked data ? connecting the Semantic Web 398


    17.3 MINING THE WEB: SEARCH AND SEMANTICS 402


    17.3.1 Search words and links 402


    17.3.2 Explicit markup 403


    17.3.3 External semantics 405


    17.4 USING WEB DATA 408


    17.4.1 Knowledge-rich applications 408


    17.4.2 The surprising power of big data 409


    17.5 THE HUMAN WEB 412


    17.5.1 Recommender systems 412


    17.5.2 Crowdsourcing and human computation 414


    17.5.3 Social media as data 416


    17.6 SUMMARY 417


    Section IV Humans at the Heart


    Chapter 18 ?Expert and decision support systems 421


    18.1 OVERVIEW 421


    18.2 INTRODUCTION ? EXPERTS IN THE LOOP 421


    18.3 EXPERT SYSTEMS 422


    18.3.1 Uses of expert systems 423


    18.3.2 Architecture of an expert system 425


    18.3.3 Explanation facility 425


    18.3.4 Dialogue and UI component 427


    18.3.5 Examples of four expert systems 428


    18.3.5.1 Example 1: MYCIN 428


    18.3.5.2 Example 2: PROSPECTOR 429


    18.3.5.3 Example 3: DENDRAL 429


    18.3.5.4 Example 4: XCON 430


    18.3.6 Building an expert system 430


    Contents ? xix


    18.3.7 Limitations of expert systems 431


    18.4 KNOWLEDGE ACQUISITION 431


    18.4.1 Knowledge elicitation 432


    18.4.1.1 Unstructured interviews. 432


    18.4.1.2 Structured interviews. 433


    18.4.1.3 Focused discussions. 433


    18.4.1.4 Role reversal. 433


    18.4.1.5 Think-aloud. 433


    18.4.2 Knowledge Representation 434


    18.4.2.1 Expert system shells 434


    18.4.2.2 High-level programming languages 434


    18.4.2.3 Ontologies 434


    18.4.2.4 Selecting a tool 435


    18.5 EXPERTS AND MACHINE LEARNING 436


    18.5.1 Knowledge elicitation for ML 438


    18.5.1.1 Acquiring tacit knowledge 438


    18.5.1.2 Feature selection 438


    18.5.1.3 Expert labelling 438


    18.5.1.4 Iteration and interaction 439


    18.5.2 Algorithmic choice, validation and explanation 439


    18.6 DECISION SUPPORT SYSTEMS. 441


    18.6.1 Visualisation 442


    18.6.2 Data management and analysis 443


    18.6.3 Visual Analytics 444


    18.6.3.1 Visualisation in VA 445


    18.6.3.2 Data management and analysis for VA 446


    18.7 STEPPING BACK 447


    18.7.1 Who is it about? 447


    18.7.2 Why are we doing it? 447


    18.7.3 Wider context 449


    18.7.4 Cost?benefit balance 450


    18.8 SUMMARY 451


    Chapter 19 ?AI working with and for humans 455


    19.1 OVERVIEW 455


    19.2 INTRODUCTION 455


    xx ? Contents


    19.3 LEVELS AND TYPES OF HUMAN CONTACT 457


    19.3.1 Social scale 457


    19.3.2 Visibility and embodiment 458


    19.3.3 Intentionality 458


    19.3.4 Who is in control 459


    19.3.5 Levels of automation 460


    19.4 ON A DEVICE ? INTELLIGENT USER INTERFACES 462


    19.4.1 Low-level input 462


    19.4.2 Conversational user interfaces 462


    19.4.3 Predicting what next 464


    19.4.4 Finding and managing information 464


    19.4.5 Helping with tasks 466


    19.4.6 Adaptation and personalisation 467


    19.4.7 Going small 468


    19.5 IN THE WORLD ? SMART ENVIRONMENTS 469


    19.5.1 Configuration 470


    19.5.2 Sensor fusion 470


    19.5.3 Context and activity 472


    19.5.4 Designing for uncertainty in sensor-rich smart environments 473


    19.5.5 Dealing with hiddenness ? a central heating controller 474


    19.6 DESIGNING FOR AI?HUMAN INTERACTION 476


    19.6.1 Appropriate intelligence ? soft failure 476


    19.6.2 Feedback ? error detection and repair 477


    19.6.3 Decisions and suggestions 478


    19.6.4 Case study: OnCue ? appropriate intelligence by design 480


    19.7 TOWARDS HUMAN?MACHINE SYNERGY 481


    19.7.1 Tuning AI algorithms for interaction 481


    19.7.2 Tuning interaction for AI 482


    19.8 SUMMARY 483


    Chapter 20 ?When things go wrong 487


    20.1 OVERVIEW 487


    20.2 INTRODUCTION 487


    20.3 WRONG ON PURPOSE? 488


    20.3.1 Intentional bad use 488


    20.3.2 Unintentional problems 489


    Contents ? xxi


    20.4 GENERAL STRATEGIES 490


    20.4.1 Transparency and trust 490


    20.4.2 Algorithmic accountability 491


    20.4.3 Levels of opacity 492


    20.5 SOURCES OF ALGORITHMIC BIAS 493


    20.5.1 What is bias? 493


    20.5.2 Stages in machine learning 494


    20.5.3 Bias in the training data 494


    20.5.4 Bias in the objective function 497


    20.5.5 Bias in the accurate result 498


    20.5.6 Proxy measures 499


    20.5.7 Input feature choice 500


    20.5.8 Bias and human reasoning 500


    20.5.9 Avoiding bias 501


    20.6 PRIVACY 502


    20.6.1 Anonymisation 502


    20.6.2 Obfuscation 503


    20.6.3 Aggregation 503


    20.6.4 Adversarial privacy 504


    20.6.5 Federated learning 504


    20.7 COMMUNICATION, INFORMATION AND MISINFORMATION 505


    20.7.1 Social media 505


    20.7.2 Deliberate misinformation 506


    20.7.3 Filter bubbles 507


    20.7.4 Poor information 507


    20.8 SUMMARY 508


    Chapter 21 ?Explainable AI 513


    21.1 OVERVIEW 513


    21.2 INTRODUCTION 513


    21.2.1 Why we need explainable AI 514


    21.2.2 Is explainable AI possible? 515


    21.3 AN EXAMPLE ? QUERY-BY-BROWSING 515


    21.3.1 The problem 516


    21.3.2 A solution 516


    21.3.3 How it works 517


    xxii ? Contents


    21.4 HUMAN EXPLANATION ? SUFFICIENT REASON 518


    21.5 LOCAL AND GLOBAL EXPLANATIONS 519


    21.5.1 Decision trees ? easier explanations 519


    21.5.2 Black-box ? sensitivity and perturbations 520


    21.6 HEURISTICS FOR EXPLANATION 522


    21.6.1 White-box techniques 523


    21.6.2 Black-box techniques 524


    21.6.3 Grey-box techniques 526


    21.7 SUMMARY 529


    Chapter 22 ?Models of the mind ? Human-Like Computing 533


    22.1 OVERVIEW 533


    22.2 INTRODUCTION 533


    22.3 WHAT IS THE HUMAN MIND? 534


    22.4 RATIONALITY 535


    22.4.1 ACTR 536


    22.4.2 SOAR 537


    22.5 SUBCONSCIOUS AND INTUITION 538


    22.5.1 Heuristics and imagination 539


    22.5.2 Attention, salience and boredom 539


    22.5.3 Rapid serial switching 540


    22.5.4 Disambiguation 541


    22.5.5 Boredom 542


    22.5.6 Dreaming 542


    22.6 EMOTION 543


    22.6.1 Empathy and theory of mind 544


    22.6.2 Regret 546


    22.6.3 Feeling 548


    22.7 SUMMARY 549


    Chapter 23 ?Philosophical, ethical and social issues 553


    23.1 OVERVIEW 553


    23.2 THE LIMITS OF AI 553


    23.2.1 Intelligent machines or engineering tools? 554


    23.2.2 What is intelligence? 554


    23.2.3 Computational argument vs. Searle?s Chinese Room 555


    23.3 CREATIVITY 556


    Contents ? xxiii


    23.3.1 The creative process 557


    23.3.2 Generate and filter 557


    23.3.3 The critical edge 558


    23.3.4 Impact on creative professionals 558


    23.4 CONSCIOUSNESS 559


    23.4.1 Defining consciousness 559


    23.4.2 Dualism and materialism 560


    23.4.3 The hard problem of consciousness 561


    23.5 MORALITY OF THE ARTIFICIAL 561


    23.5.1 Morally neutral 561


    23.5.2 Who is responsible? 563


    23.5.3 Life or death decisions 563


    23.5.4 The special ethics of AI 565


    23.6 SOCIETY AND WORK 565


    23.6.1 Humanising AI or dehumanising people 566


    23.6.2 Top-down: algorithms grading students 566


    23.6.3 Bottom-up: when AI ruled France 568


    23.6.4 AI and work 569


    23.7 MONEY AND POWER 570


    23.7.1 Finance and markets 571


    23.7.2 Advertising and runaway AI 572


    23.7.3 Big AI: the environment and social impact 573


    23.8 SUMMARY 575


    Section V Looking Forward


    Chapter 24 ?Epilogue: what next? 581


    24.1 OVERVIEW 581


    24.2 CRYSTAL BALL 581


    24.3 WHAT NEXT: AI TECHNOLOGY 582


    24.3.1 Bigger and Better 582


    24.3.2 Smaller and Smarter 582


    24.3.3 Mix and Match 584


    24.3.4 Partners with People 584


    24.4 WHAT NEXT: AI IN THE WORLD 585


    24.4.1 Friend or Foe? 585


    24.4.2 Boom then Bust 586


    xxiv ? Contents


    24.4.3 Everywhere and nowhere 586


    24.5 SUMMARY ? FROM HYPE TO HOPE 586


    Bibliography 589


    Index

    Több