Artificial Intelligence - Dix, Alan; - Prospero Internetes Könyváruház

Artificial Intelligence: Humans at the Heart of Algorithms
 
A termék adatai:

ISBN13:9780367536879
ISBN10:03675368711
Kötéstípus:Keménykötés
Terjedelem:704 oldal
Méret:280x210 mm
Nyelv:angol
Illusztrációk: 276 Illustrations, black & white; 188 Line drawings, black & white; 88 Line drawings, color; 3 Tables, black & white
700
Témakör:

Artificial Intelligence

Humans at the Heart of Algorithms
 
Kiadás sorszáma: 2
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 130.00
Becsült forint ár:
68 250 Ft (65 000 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

61 425 (58 500 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 825 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This new edition expands and revises the book throughout, with new material added to existing chapters, including short case studies, as well as adding new chapters on explainable AI, and big data. 

Hosszú leírás:

An authoritative and accessible one-stop resource, the first edition of An Introduction to Artificial Intelligence presented the first full examination of AI. Designed to provide an understanding of the foundations of artificial intelligence, it examined the central computational techniques employed by AI, including knowledge representation, search, reasoning, and learning, as well as the principal application domains of expert systems, natural language, vision, robotics, software agents and cognitive modeling. Many of the major philosophical and ethical issues of AI were also introduced. This new edition expands and revises the book throughout, with new material added to existing chapters, including short case studies, as well as adding new chapters on explainable AI, and big data. It expands the book?s focus on human-centred AI, covering bias (gender, ethnic), the need for transparency, augmentation vs replacement, IUI, and designing interactions to aid ML. With detailed, well-illustrated examples and exercises throughout, this book provides a substantial and robust introduction to artificial intelligence in a clear and concise coursebook form. It stands as a core text for all students and computer scientists approaching AI.

Tartalomjegyzék:

List of Figures xxv


Preface xxxv


Author Bio xxxvii


Chapter 1 ? Introduction 1


1.1 WHAT IS ARTIFICIAL INTELLIGENCE? 1


1.1.1 How much like a human: strong vs. weak AI 1


1.1.2 Top-down or bottom-up: symbolic vs. sub-symbolic 2


1.1.3 A working definition 3


1.1.4 Human intelligence 3


1.1.5 Bottom up and top down 4


1.2 HUMANS AT THE HEART 4


1.3 A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE 5


1.3.1 The development of AI 6


1.3.2 The physical symbol system hypothesis 8


1.3.3 Sub-symbolic spring 9


1.3.4 AI Renaissance 10


1.3.5 Moving onwards 11


1.4 STRUCTURE OF THIS BOOK ? A LANDSCAPE OF AI 11


Section I Knowledge-Rich AI


Chapter 2 ? Knowledge in AI 15


2.1 OVERVIEW 15


2.2 INTRODUCTION 15


2.3 REPRESENTING KNOWLEDGE 16


2.4 METRICS FOR ASSESSING KNOWLEDGE REPRESENTATION SCHEMES


19


2.5 LOGIC REPRESENTATIONS 20


2.6 PROCEDURAL REPRESENTATION 23


vii


viii ? Contents


2.6.1 The database 23


2.6.2 The production rules 23


2.6.3 The interpreter 24


2.6.4 An example production system: making a loan 24


2.7 NETWORK REPRESENTATIONS 26


2.8 STRUCTURED REPRESENTATIONS 28


2.8.1 Frames 29


2.8.2 Scripts 29


2.9 GENERAL KNOWLEDGE 31


2.10 THE FRAME PROBLEM 32


2.11 KNOWLEDGE ELICITATION 33


2.12 SUMMARY 33


Chapter 3 ? Reasoning 37


3.1 OVERVIEW 37


3.2 WHAT IS REASONING? 37


3.3 FORWARD AND BACKWARD REASONING 39


3.4 REASONING WITH UNCERTAINTY 40


3.4.1 Non-monotonic reasoning 40


3.4.2 Probabilistic reasoning 41


3.4.3 Certainty factors 43


3.4.4 Fuzzy reasoning 45


3.4.5 Reasoning by analogy 46


3.4.6 Case-based reasoning 46


3.5 REASONING OVER NETWORKS 48


3.6 CHANGING REPRESENTATIONS 51


3.7 SUMMARY 51


Chapter 4 ? Search 53


4.1 INTRODUCTION 53


4.1.1 Types of problem 53


4.1.2 Structuring the search space 57


4.2 EXHAUSTIVE SEARCH AND SIMPLE PRUNING 63


4.2.1 Depth and breadth first search 63


4.2.2 Comparing depth and breadth first searches 65


4.2.3 Programming and space costs 67


4.2.4 Iterative deepening and broadening 68


Contents ? ix


4.2.5 Finding the best solution ? branch and bound 69


4.2.6 Graph search 70


4.3 HEURISTIC SEARCH 70


4.3.1 Hill climbing andbest first ? goal-directed search 72


4.3.2 Finding the best solution ? the A? algorithm 72


4.3.3 Inexact search 75


4.4 KNOWLEDGE-RICH SEARCH 77


4.4.1 Constraint satisfaction 78


4.5 SUMMARY 80


Section II Data and Learning


Chapter 5 ? Machine learning 85


5.1 OVERVIEW 85


5.2 WHY DO WE WANT MACHINE LEARNING? 85


5.3 HOW MACHINES LEARN 87


5.3.1 Phases of machine learning 87


5.3.2 Rote learning and the importance of generalization 89


5.3.3 Inputs to training 90


5.3.4 Outputs of training 91


5.3.5 The training process 92


5.4 DEDUCTIVE LEARNING 93


5.5 INDUCTIVE LEARNING 94


5.5.1 Version spaces 95


5.5.2 Decision trees 99


5.5.2.1 Building a binary tree 99


5.5.2.2 More complex trees 102


5.5.3 Rule induction and credit assignment 103


5.6 EXPLANATION-BASED LEARNING 104


5.7 EXAMPLE: QUERY-BY-BROWSING 105


5.7.1 What the user sees 105


5.7.2 How it works 105


5.7.3 Problems 107


5.8 SUMMARY 107


Chapter 6 ? Neural Networks 109


6.1 OVERVIEW 109


x ? Contents


6.2 WHY USE NEURAL NETWORKS? 109


6.3 THE PERCEPTRON 110


6.3.1 The XOR problem 112


6.4 THE MULTI-LAYER PERCEPTRON 113


6.5 BACKPROPAGATION 114


6.5.1 Basic principle 115


6.5.2 Backprop for a single layer network 116


6.5.3 Backprop for hidden layers 117


6.6 ASSOCIATIVE MEMORIES 117


6.6.1 Boltzmann Machines 119


6.6.2 Kohonen self-organizing networks 121


6.7 LOWER-LEVEL MODELS 122


6.7.1 Cortical layers 122


6.7.2 Inhibition 123


6.7.3 Spiking neural networks 123


6.8 HYBRID ARCHITECTURES 124


6.8.1 Hybrid layers 124


6.8.2 Neurosymbolic AI 125


6.9 SUMMARY 126


Chapter 7 ? Statistical and Numerical Techniques 129


7.1 OVERVIEW 129


7.2 LINEAR REGRESSION 129


7.3 VECTORS AND MATRICES 132


7.4 EIGENVALUES AND PRINCIPAL COMPONENTS 134


7.5 CLUSTERING AND K-MEANS 136


7.6 RANDOMNESS 138


7.6.1 Simple statistics 138


7.6.2 Distributions and long-tail data 140


7.6.3 Least squares 142


7.6.4 Monte Carlo techniques 142


7.7 NON-LINEAR FUNCTIONS FOR MACHINE LEARNING 144


7.7.1 Support Vector Machines 144


7.7.2 Reservoir Computing 145


7.7.3 Kolmogorov-Arnold Networks 146


7.8 SUMMARY 147


Contents ? xi


Chapter 8 ? Going Large: deep learning and big data 151


8.1 OVERVIEW 151


8.2 DEEP LEARNING 152


8.2.1 Why are many layers so difficult? 153


8.2.2 Architecture of the layers 153


8.3 GROWING THE DATA 156


8.3.1 Modifying real data 157


8.3.2 Virtual worlds 157


8.3.3 Self learning 157


8.4 DATA REDUCTION 158


8.4.1 Dimension reduction 159


8.4.1.1 Vector space techniques 159


8.4.1.2 Non-numeric features 160


8.4.2 Reduce total number of data items 161


8.4.2.1 Sampling 161


8.4.2.2 Aggregation 161


8.4.3 Segmentation 162


8.4.3.1 Class segmentation 162


8.4.3.2 Result recombination 162


8.4.3.3 Weakly-communicating partial analysis 163


8.5 PROCESSING BIG DATA 164


8.5.1 Why it is hard ? distributed storage and computation 164


8.5.2 Principles behind MapReduce 165


8.5.3 MapReduce for the cloud 166


8.5.4 If it can go wrong ? resilience for big processing 167


8.6 DATA AND ALGORITHMS AT SCALE 169


8.6.1 Big graphs 169


8.6.2 Time series and event streams 170


8.6.2.1 Multi-scale with mega-windows 170


8.6.2.2 Untangling streams 171


8.6.2.3 Real-time processing 171


8.7 SUMMARY 171


Chapter 9 ? Making Sense of Machine Learning 175


9.1 OVERVIEW 175


9.2 THE MACHINE LEARNING PROCESS 175


xii ? Contents


9.2.1 Training phase 176


9.2.2 Application phase 177


9.2.3 Validation phase 177


9.3 EVALUATION 178


9.3.1 Measures of effectiveness 178


9.3.2 Precision?recall trade-off 180


9.3.3 Data for evaluation 182


9.3.4 Multi-stage evaluation 182


9.4 THE FITNESS LANDSCAPE 183


9.4.1 Hill-climbing and gradient descent / ascent 183


9.4.2 Local maxima and minima 184


9.4.3 Plateau and ridge effects 185


9.4.4 Local structure 186


9.4.5 Approximating the landscape 186


9.4.6 Forms of fitness function 187


9.5 DEALING WITH COMPLEXITY 188


9.5.1 Degrees of freedom and dimension reduction 188


9.5.2 Constraints and dependent features 189


9.5.3 Continuity and learning 191


9.5.4 Multi-objective optimisation 193


9.5.5 Partially labelled data 194


9.6 SUMMARY 196


Chapter 10 ?Data Preparation 199


10.1 OVERVIEW 199


10.2 STAGES OF DATA PREPARATION 199


10.3 CREATING A DATASET 200


10.3.1 Extraction and gathering of data 200


10.3.2 Entity reconciliation and linking 201


10.3.3 Exception sets 202


10.4 MANIPULATION AND TRANSFORMATION OF DATA 202


10.4.1 Types of data value 203


10.4.2 Transforming to the right kind of data 204


10.5 NUMERICAL TRANSFORMATIONS 205


10.5.1 Information 205


10.5.2 Normalising data 207


Contents ? xiii


10.5.3 Missing values ? filling the gaps 207


10.5.4 Outliers ? dealing with extremes 209


10.6 NON-NUMERIC TRANSFORMATIONS 211


10.6.1 Media data 211


10.6.2 Text 212


10.6.3 Structure transformation 214


10.7 AUTOMATION AND DOCUMENTATION 214


10.8 SUMMARY 216


Section III Specialised Areas


Chapter 11 ?Game playing 221


11.1 OVERVIEW 221


11.2 INTRODUCTION 221


11.3 CHARACTERISTICS OF GAME PLAYING 223


11.4 STANDARD GAMES 225


11.4.1 A simple game tree 225


11.4.2 Heuristics and minimax search 225


11.4.3 Horizon problems 227


11.4.4 Alpha?beta pruning 228


11.4.5 The imperfect opponent 229


11.5 NON-ZERO-SUM GAMES AND SIMULTANEOUS PLAY 229


11.5.1 The prisoner?s dilemma 230


11.5.2 Searching the game tree 230


11.5.3 No alpha?beta pruning 232


11.5.4 Pareto-optimality 232


11.5.5 Multi-party competition and co-operation 233


11.6 THE ADVERSARY IS LIFE! 233


11.7 PROBABILITY 235


11.8 NEURAL NETWORKS FOR GAMES 236


11.8.1 Where to use a neural network 236


11.8.2 Training data and self play 238


11.9 SUMMARY 238


Chapter 12 ?Computer vision 243


12.1 OVERVIEW 243


12.2 INTRODUCTION 243


xiv ? Contents


12.2.1 Why computer vision is difficult 243


12.2.2 Phases of computer vision 244


12.3 DIGITIZATION AND SIGNAL PROCESSING 245


12.3.1 Digitizing images 245


12.3.2 Thresholding 246


12.3.3 Digital filters 248


12.3.3.1 Linear filters 249


12.3.3.2 Smoothing 249


12.3.3.3 Gaussian filters 251


12.3.3.4 Practical considerations 252


12.4 EDGE DETECTION 252


12.4.1 Identifying edge pixels 253


12.4.1.1 Gradient operators 253


12.4.1.2 Robert?s operator 253


12.4.1.3 Sobel?s operator 256


12.4.1.4 Laplacian operator 257


12.4.1.5 Successive refinement and Marr?s primal sketch 258


12.4.2 Edge following 259


12.5 REGION DETECTION 260


12.5.1 Region growing 261


12.5.2 The problem of texture 261


12.5.3 Representing regions ? quadtrees 262


12.5.4 Computational problems 263


12.6 RECONSTRUCTING OBJECTS 263


12.6.1 Inferring three-dimensional features 263


12.6.1.1 Problems with labelling 266


12.6.2 Using properties of regions 267


12.7 IDENTIFYING OBJECTS 269


12.7.1 Using bitmaps 269


12.7.2 Using summary statistics 270


12.7.3 Using outlines 271


12.7.4 Using paths 272


12.8 FACIAL AND BODY RECOGNITION 273


12.9 NEURAL NETWORKS FOR IMAGES 276


12.9.1 Convolutional neural networks 276


12.9.2 Autoencoders 277


Contents ? xv


12.10 GENERATIVE ADVERSARIAL NETWORKS 279


12.10.1 Generated data 279


12.10.2 Diffusion models 280


12.10.3 Bottom-up and top-down processing 281


12.11 MULTIPLE IMAGES 281


12.11.1 Stereo vision 282


12.11.2 Moving pictures 284


12.12 SUMMARY 285


Chapter 13 ?Natural language understanding 289


13.1 OVERVIEW 289


13.2 WHAT IS NATURAL LANGUAGE UNDERSTANDING? 289


13.3 WHY DO WE NEED NATURAL LANGUAGE UNDERSTANDING? 290


13.4 WHY IS NATURAL LANGUAGE UNDERSTANDING DIFFICULT? 290


13.5 AN EARLY ATTEMPT AT NATURAL LANGUAGE UNDERSTANDING:


SHRDLU 292


13.6 HOW DOES NATURAL LANGUAGE UNDERSTANDING WORK? 293


13.7 SYNTACTIC ANALYSIS 295


13.7.1 Grammars 296


13.7.2 An example: generating a grammar fragment 297


13.7.3 Transition networks 299


13.7.4 Context-sensitive grammars 302


13.7.5 Feature sets 303


13.7.6 Augmented transition networks 304


13.7.7 Taggers 304


13.8 SEMANTIC ANALYSIS 305


13.8.1 Semantic grammars 306


13.8.1.1 An example: a database query interpreter revisited 306


13.8.2 Case grammars 307


13.9 PRAGMATIC ANALYSIS 310


13.9.1 Speech acts 311


13.10 GRAMMAR-FREE APPROACHES 311


13.10.1 Template matching 311


13.10.2 Keyword matching 312


13.10.3 Predictive methods 312


13.10.4 Statistical methods 313


13.11 SUMMARY 314


xvi ? Contents


13.12 SOLUTION TO SHRDLU PROBLEM 315


Chapter 14 ?Time Series and Sequential Data 317


14.1 OVERVIEW 317


14.2 GENERAL PROPERTIES 317


14.2.1 Kinds of temporal and sequential data 317


14.2.2 Looking through time 318


14.2.3 Processing temporal data 320


14.2.3.1 Windowing 320


14.2.3.2 Hidden state 321


14.2.3.3 Non-time domain transformations 321


14.3 PROBABILITY MODELS 322


14.3.1 Markov Model 323


14.3.2 Higher-order Markov Model 324


14.3.3 Hidden Markov Model 326


14.4 GRAMMAR AND PATTERN-BASED APPROACHES 327


14.4.1 Regular expressions 327


14.4.2 More complex grammars 328


14.5 NEURAL NETWORKS 329


14.5.1 Window-based methods 329


14.5.2 Recurrent Neural Networks 331


14.5.3 Long-term short-term memory networks 332


14.5.4 Transformer models 332


14.6 STATISTICAL AND NUMERICAL TECHNIQUES 332


14.6.1 Simple data cleaning techniques 333


14.6.2 Logarithmic transformations and exponential growth 334


14.6.3 ARMA models 335


14.6.4 Mixed statistics/ML models 336


14.7 MULTI-STAGE/SCALE 337


14.8 SUMMARY 339


Chapter 15 ?Planning and robotics 343


15.1 OVERVIEW 343


15.2 INTRODUCTION 343


15.2.1 Friend or foe? 343


15.2.2 Different kinds of robots 344


15.3 GLOBAL PLANNING 345


Contents ? xvii


15.3.1 Planning actions ? means?ends analysis 345


15.3.2 Planning routes ? configuration spaces 348


15.4 LOCAL PLANNING 350


15.4.1 Local planning and obstacle avoidance 350


15.4.2 Finding out about the world 353


15.5 LIMBS, LEGS AND EYES 356


15.5.1 Limb control 356


15.5.2 Walking ? on one, two or more legs 359


15.5.3 Active vision 361


15.6 PRACTICAL ROBOTICS 363


15.6.1 Controlling the environment 363


15.6.2 Safety and hierarchical control 364


15.7 SUMMARY 365


Chapter 16 ?Agents 369


16.1 OVERVIEW 369


16.2 SOFTWARE AGENTS 369


16.2.1 The rise of the agent 370


16.2.2 Triggering actions 371


16.2.3 Watching and learning 372


16.2.4 Searching for information 374


16.3 REINFORCEMENT LEARNING 376


16.3.1 Single step learning 376


16.3.2 Choices during learning 378


16.3.3 Intermittent rewards and credit assignment 379


16.4 COOPERATING AGENTS AND DISTRIBUTED AI 379


16.4.1 Blackboard architectures 380


16.4.2 Distributed control 382


16.5 LARGER COLLECTIVES 383


16.5.1 Emergent behaviour 383


16.5.2 Cellular automata 384


16.5.3 Artificial life 384


16.5.4 Swarm computing 385


16.5.5 Ensemble methods 386


16.6 SUMMARY 388


Chapter 17 ?Web scale reasoning 391


xviii ? Contents


17.1 OVERVIEW 391


17.2 THE SEMANTIC WEB 391


17.2.1 Representing knowledge ? RDF and triples 392


17.2.2 Ontologies 394


17.2.3 Asking questions ? SPARQL 395


17.2.4 Talking about RDF ? reification, named graphs and provenance


396


17.2.5 Linked data ? connecting the Semantic Web 398


17.3 MINING THE WEB: SEARCH AND SEMANTICS 402


17.3.1 Search words and links 402


17.3.2 Explicit markup 403


17.3.3 External semantics 405


17.4 USING WEB DATA 408


17.4.1 Knowledge-rich applications 408


17.4.2 The surprising power of big data 409


17.5 THE HUMAN WEB 412


17.5.1 Recommender systems 412


17.5.2 Crowdsourcing and human computation 414


17.5.3 Social media as data 416


17.6 SUMMARY 417


Section IV Humans at the Heart


Chapter 18 ?Expert and decision support systems 421


18.1 OVERVIEW 421


18.2 INTRODUCTION ? EXPERTS IN THE LOOP 421


18.3 EXPERT SYSTEMS 422


18.3.1 Uses of expert systems 423


18.3.2 Architecture of an expert system 425


18.3.3 Explanation facility 425


18.3.4 Dialogue and UI component 427


18.3.5 Examples of four expert systems 428


18.3.5.1 Example 1: MYCIN 428


18.3.5.2 Example 2: PROSPECTOR 429


18.3.5.3 Example 3: DENDRAL 429


18.3.5.4 Example 4: XCON 430


18.3.6 Building an expert system 430


Contents ? xix


18.3.7 Limitations of expert systems 431


18.4 KNOWLEDGE ACQUISITION 431


18.4.1 Knowledge elicitation 432


18.4.1.1 Unstructured interviews. 432


18.4.1.2 Structured interviews. 433


18.4.1.3 Focused discussions. 433


18.4.1.4 Role reversal. 433


18.4.1.5 Think-aloud. 433


18.4.2 Knowledge Representation 434


18.4.2.1 Expert system shells 434


18.4.2.2 High-level programming languages 434


18.4.2.3 Ontologies 434


18.4.2.4 Selecting a tool 435


18.5 EXPERTS AND MACHINE LEARNING 436


18.5.1 Knowledge elicitation for ML 438


18.5.1.1 Acquiring tacit knowledge 438


18.5.1.2 Feature selection 438


18.5.1.3 Expert labelling 438


18.5.1.4 Iteration and interaction 439


18.5.2 Algorithmic choice, validation and explanation 439


18.6 DECISION SUPPORT SYSTEMS. 441


18.6.1 Visualisation 442


18.6.2 Data management and analysis 443


18.6.3 Visual Analytics 444


18.6.3.1 Visualisation in VA 445


18.6.3.2 Data management and analysis for VA 446


18.7 STEPPING BACK 447


18.7.1 Who is it about? 447


18.7.2 Why are we doing it? 447


18.7.3 Wider context 449


18.7.4 Cost?benefit balance 450


18.8 SUMMARY 451


Chapter 19 ?AI working with and for humans 455


19.1 OVERVIEW 455


19.2 INTRODUCTION 455


xx ? Contents


19.3 LEVELS AND TYPES OF HUMAN CONTACT 457


19.3.1 Social scale 457


19.3.2 Visibility and embodiment 458


19.3.3 Intentionality 458


19.3.4 Who is in control 459


19.3.5 Levels of automation 460


19.4 ON A DEVICE ? INTELLIGENT USER INTERFACES 462


19.4.1 Low-level input 462


19.4.2 Conversational user interfaces 462


19.4.3 Predicting what next 464


19.4.4 Finding and managing information 464


19.4.5 Helping with tasks 466


19.4.6 Adaptation and personalisation 467


19.4.7 Going small 468


19.5 IN THE WORLD ? SMART ENVIRONMENTS 469


19.5.1 Configuration 470


19.5.2 Sensor fusion 470


19.5.3 Context and activity 472


19.5.4 Designing for uncertainty in sensor-rich smart environments 473


19.5.5 Dealing with hiddenness ? a central heating controller 474


19.6 DESIGNING FOR AI?HUMAN INTERACTION 476


19.6.1 Appropriate intelligence ? soft failure 476


19.6.2 Feedback ? error detection and repair 477


19.6.3 Decisions and suggestions 478


19.6.4 Case study: OnCue ? appropriate intelligence by design 480


19.7 TOWARDS HUMAN?MACHINE SYNERGY 481


19.7.1 Tuning AI algorithms for interaction 481


19.7.2 Tuning interaction for AI 482


19.8 SUMMARY 483


Chapter 20 ?When things go wrong 487


20.1 OVERVIEW 487


20.2 INTRODUCTION 487


20.3 WRONG ON PURPOSE? 488


20.3.1 Intentional bad use 488


20.3.2 Unintentional problems 489


Contents ? xxi


20.4 GENERAL STRATEGIES 490


20.4.1 Transparency and trust 490


20.4.2 Algorithmic accountability 491


20.4.3 Levels of opacity 492


20.5 SOURCES OF ALGORITHMIC BIAS 493


20.5.1 What is bias? 493


20.5.2 Stages in machine learning 494


20.5.3 Bias in the training data 494


20.5.4 Bias in the objective function 497


20.5.5 Bias in the accurate result 498


20.5.6 Proxy measures 499


20.5.7 Input feature choice 500


20.5.8 Bias and human reasoning 500


20.5.9 Avoiding bias 501


20.6 PRIVACY 502


20.6.1 Anonymisation 502


20.6.2 Obfuscation 503


20.6.3 Aggregation 503


20.6.4 Adversarial privacy 504


20.6.5 Federated learning 504


20.7 COMMUNICATION, INFORMATION AND MISINFORMATION 505


20.7.1 Social media 505


20.7.2 Deliberate misinformation 506


20.7.3 Filter bubbles 507


20.7.4 Poor information 507


20.8 SUMMARY 508


Chapter 21 ?Explainable AI 513


21.1 OVERVIEW 513


21.2 INTRODUCTION 513


21.2.1 Why we need explainable AI 514


21.2.2 Is explainable AI possible? 515


21.3 AN EXAMPLE ? QUERY-BY-BROWSING 515


21.3.1 The problem 516


21.3.2 A solution 516


21.3.3 How it works 517


xxii ? Contents


21.4 HUMAN EXPLANATION ? SUFFICIENT REASON 518


21.5 LOCAL AND GLOBAL EXPLANATIONS 519


21.5.1 Decision trees ? easier explanations 519


21.5.2 Black-box ? sensitivity and perturbations 520


21.6 HEURISTICS FOR EXPLANATION 522


21.6.1 White-box techniques 523


21.6.2 Black-box techniques 524


21.6.3 Grey-box techniques 526


21.7 SUMMARY 529


Chapter 22 ?Models of the mind ? Human-Like Computing 533


22.1 OVERVIEW 533


22.2 INTRODUCTION 533


22.3 WHAT IS THE HUMAN MIND? 534


22.4 RATIONALITY 535


22.4.1 ACTR 536


22.4.2 SOAR 537


22.5 SUBCONSCIOUS AND INTUITION 538


22.5.1 Heuristics and imagination 539


22.5.2 Attention, salience and boredom 539


22.5.3 Rapid serial switching 540


22.5.4 Disambiguation 541


22.5.5 Boredom 542


22.5.6 Dreaming 542


22.6 EMOTION 543


22.6.1 Empathy and theory of mind 544


22.6.2 Regret 546


22.6.3 Feeling 548


22.7 SUMMARY 549


Chapter 23 ?Philosophical, ethical and social issues 553


23.1 OVERVIEW 553


23.2 THE LIMITS OF AI 553


23.2.1 Intelligent machines or engineering tools? 554


23.2.2 What is intelligence? 554


23.2.3 Computational argument vs. Searle?s Chinese Room 555


23.3 CREATIVITY 556


Contents ? xxiii


23.3.1 The creative process 557


23.3.2 Generate and filter 557


23.3.3 The critical edge 558


23.3.4 Impact on creative professionals 558


23.4 CONSCIOUSNESS 559


23.4.1 Defining consciousness 559


23.4.2 Dualism and materialism 560


23.4.3 The hard problem of consciousness 561


23.5 MORALITY OF THE ARTIFICIAL 561


23.5.1 Morally neutral 561


23.5.2 Who is responsible? 563


23.5.3 Life or death decisions 563


23.5.4 The special ethics of AI 565


23.6 SOCIETY AND WORK 565


23.6.1 Humanising AI or dehumanising people 566


23.6.2 Top-down: algorithms grading students 566


23.6.3 Bottom-up: when AI ruled France 568


23.6.4 AI and work 569


23.7 MONEY AND POWER 570


23.7.1 Finance and markets 571


23.7.2 Advertising and runaway AI 572


23.7.3 Big AI: the environment and social impact 573


23.8 SUMMARY 575


Section V Looking Forward


Chapter 24 ?Epilogue: what next? 581


24.1 OVERVIEW 581


24.2 CRYSTAL BALL 581


24.3 WHAT NEXT: AI TECHNOLOGY 582


24.3.1 Bigger and Better 582


24.3.2 Smaller and Smarter 582


24.3.3 Mix and Match 584


24.3.4 Partners with People 584


24.4 WHAT NEXT: AI IN THE WORLD 585


24.4.1 Friend or Foe? 585


24.4.2 Boom then Bust 586


xxiv ? Contents


24.4.3 Everywhere and nowhere 586


24.5 SUMMARY ? FROM HYPE TO HOPE 586


Bibliography 589


Index