Basics of Nonlinear Optimization - Galewski, Marek; - Prospero Internetes Könyváruház

Basics of Nonlinear Optimization: Around the Weierstrass Theorem
 
A termék adatai:

ISBN13:9783031771590
ISBN10:3031771591
Kötéstípus:Puhakötés
Terjedelem:168 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 2 Illustrations, black & white; 1 Illustrations, color
681
Témakör:

Basics of Nonlinear Optimization

Around the Weierstrass Theorem
 
Kiadás sorszáma: 2024
Kiadó: Birkhäuser
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 48.14
Becsült forint ár:
20 420 Ft (19 448 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

18 787 (17 892 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 1 634 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This textbook gives an introduction to optimization tools which arise around the Weierstrass theorem about the minimum of a lower semicontinuous function. Starting from a Euclidean space, it moves further into the infinite dimensional setting towards the direct variational method, going through differentiation and introducing relevant background information on the way.



Exercises accompany the text and include observations, remarks, and examples that help understand the presented material. Although some basic knowledge of functional analysis is assumed, covering Hilbert and Banach spaces and the Lebesgue integration, the required background material is covered throughout the text, and literature suggestions are provided. For less experienced readers, a summary of some optimization techniques is also included.



The book will appeal to both students and instructors in specialized courses on optimization, wishing to learn more about variational methods.

Hosszú leírás:

This textbook gives an introduction to optimization tools which arise around the Weierstrass theorem about the minimum of a lower semicontinuous function. Starting from a Euclidean space, it moves further into the infinite dimensional setting towards the direct variational method, going through differentiation and introducing relevant background information on the way.



Exercises accompany the text and include observations, remarks, and examples that help understand the presented material. Although some basic knowledge of functional analysis is assumed, covering Hilbert and Banach spaces and the Lebesgue integration, the required background material is covered throughout the text, and literature suggestions are provided. For less experienced readers, a summary of some optimization techniques is also included.



The book will appeal to both students and instructors in specialized courses on optimization, wishing to learn more about variational methods.

Tartalomjegyzék:

- 1. The Weierstrass Theorem - the origin of optimization.- 2. Some basics from functional analysis and function spaces.- 3. Differentiation in infinite dimensional spaces.- 4. On the Weierstrass Theorem in infinite dimensional spaces.- 5. Applications to multiple integrals.