Best Map Projections - Novikova, Elena; - Prospero Internetes Könyváruház

Best Map Projections
 
A termék adatai:

ISBN13:9783031783333
ISBN10:3031783336
Kötéstípus:Keménykötés
Terjedelem:224 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 6 Illustrations, black & white; 58 Illustrations, color
700
Témakör:

Best Map Projections

 
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 160.49
Becsült forint ár:
69 765 Ft (66 442 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

55 811 (53 154 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 13 953 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book presents the most condensed information about the theory of distortion theory developed by N.A. Tissot. It considers some of the issues of this theory to finding the best projections. Various criteria for ideal projections are analyzed. In finding an ideal projection using the Airy criterion for an arbitrary mapping region is solved by the variational method using the Euler?Ostrogradsky system of equations under natural boundary conditions. The same method is applied to a set of projections in which the sum of the extremal scale factors is equal to 2. It is shown that for these projections, the area distortions are quantities of the second order of smallness, while the linear distortions are quantities of the first order of smallness. The problem of finding the best projections using the Chebyshev criterion has been studied. Airy, Postel, Gauss?Kruger, and Markov projections are considered in detail.

Hosszú leírás:

This book presents the most condensed information about the theory of distortion theory developed by N.A. Tissot. It considers some of the issues of this theory to finding the best projections. Various criteria for ideal projections are analyzed. In finding an ideal projection using the Airy criterion for an arbitrary mapping region is solved by the variational method using the Euler?Ostrogradsky system of equations under natural boundary conditions. The same method is applied to a set of projections in which the sum of the extremal scale factors is equal to 2. It is shown that for these projections, the area distortions are quantities of the second order of smallness, while the linear distortions are quantities of the first order of smallness. The problem of finding the best projections using the Chebyshev criterion has been studied. Airy, Postel, Gauss?Kruger, and Markov projections are considered in detail.

Tartalomjegyzék:

Introduction.- Map projections and their distortionsMap projections and their distortions.- The problem of finding the best projections.- Ideal projection according to the Airy criterion.- The best projection from a set of close-to-equal-area projections.- Airy projection.- Gauss?Kruger projection.- Arithmetic mean principle for the Gauss?Kruger projection.- Ideal and best projections according to Chebyshev?s criterion.- Appendixes.