A termék adatai:
ISBN13: | 9783031500640 |
ISBN10: | 3031500644 |
Kötéstípus: | Keménykötés |
Terjedelem: | 655 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 61 Illustrations, black & white |
728 |
Témakör:
Geometria és topológia
Kombinatorika és gráfelmélet
Diszkrét matematika
További könyvek a matematika területén
Geometria és topológia (karitatív célú kampány)
Kombinatorika és gráfelmélet (karitatív célú kampány)
Diszkrét matematika (karitatív célú kampány)
További könyvek a matematika területén (karitatív célú kampány)
Brooks' Theorem
Graph Coloring and Critical Graphs
Sorozatcím:
Springer Monographs in Mathematics;
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma: 2024. március 15.
Kötetek száma: 1 pieces, Book
Normál ár:
Kiadói listaár:
EUR 181.89
EUR 181.89
Az Ön ára:
63 254 (60 242 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 15 813 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
Brooks' Theorem (1941) is one of the most famous and fundamental theorems in graph theory ? it is mentioned/treated in all general monographs on graph theory. It has sparked research in several directions. This book presents a comprehensive overview of this development and see it in context. It describes results, both early and recent, and explains relations: the various proofs, the many extensions and similar results for other graph parameters. It serves as a valuable reference to a wealth of information, now scattered in journals, proceedings and dissertations. The reader gets easy access to this wealth of information in comprehensive form, including best known proofs of the results described. Each chapter ends in a note section with historical remarks, comments and further results. The book is also suitable for graduate courses in graph theory and includes exercises. The book is intended for readers wanting to dig deeper into graph coloring theory than what is possible in the existing book literature. There is a comprehensive list of references to original sources.
Hosszú leírás:
Brooks' Theorem (1941) is one of the most famous and fundamental theorems in graph theory ? it is mentioned/treated in all general monographs on graph theory. It has sparked research in several directions. This book presents a comprehensive overview of this development and see it in context. It describes results, both early and recent, and explains relations: the various proofs, the many extensions and similar results for other graph parameters. It serves as a valuable reference to a wealth of information, now scattered in journals, proceedings and dissertations. The reader gets easy access to this wealth of information in comprehensive form, including best known proofs of the results described. Each chapter ends in a note section with historical remarks, comments and further results. The book is also suitable for graduate courses in graph theory and includes exercises. The book is intended for readers wanting to dig deeper into graph coloring theory than what is possible in the existing book literature. There is a comprehensive list of references to original sources.
?There are multiple problems in each chapter, copious notes on the results and a substantial bibliography. It seems likely this book will be a valuable resource for results and methods in this area for a long time.? (David B. Penman, zbMATH 1536.05004, 2024)
Tartalomjegyzék:
1 Degree Bounds for the Chromatic Number.- 2 Degeneracy and Colorings.- 3 Colorings and Orientations of Graphs.- 4 Properties of Critical Graphs.- 5 Critical Graphs with few Edges.- 6 Bounding ? by ? and ?.- 7 Coloring of Hypergraphs.- 8 Homomorphisms and Colorings.- 9 Coloring Graphs on Surface.- Appendix A: Brooks? Fundamental Paper.- Appendix B: Tutte?s Lecture from 1992.- Appendix C: Basic Graph Theory Concepts.