Calculus for Business and Economics - Fortney, Jon Pierre; Smail, Linda; - Prospero Internetes Könyváruház

Calculus for Business and Economics

An Example-Based Introduction
 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 49.99
Becsült forint ár:
26 244 Ft (24 995 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

20 996 (19 996 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 5 249 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book is designed for first-year university students specializing in business and economics. With real-world business and economics applications seamlessly integrated around the core calculus concepts, students will find the book of real practical value throughout their time in university and beyond.

Hosszú leírás:


Calculus for Business and Economics: An Example-Based Introduction is designed for first-year university students specializing in business and economics. This book is crafted in a clear, easy-to-read style, covering all the essential calculus-related topics that students are likely to encounter in their studies. With real-world business and economics applications seamlessly integrated around the core calculus concepts, students will find the book of real practical value throughout their time in university and beyond.


Features




  • Three hundred easy-to-follow examples throughout, carefully crafted to illustrate the concepts and ideas discussed.



  • Numerous exercises to practice, with solutions available online to help you learn at your own pace.



  • Each chapter concludes with a section showcasing the real-world business and economics applications of the discussed mathematical concepts.

Tartalomjegyzék:

1. Basic Algebra. 2. Rate of Change and the Derivative. 3. Exponential and Logarithmic Derivatives. 4. Rules of Differentiation. 5. Applications of Optimization. 6. Antiderivatives and Integration. 7. More Integration Topics. 8. Multivariable Functions and Partial Derivatives. 9. Special Topics.