Classical Continuum Mechanics - Surana, Karan S.; - Prospero Internetes Könyváruház

Classical Continuum Mechanics
 
A termék adatai:

ISBN13:9780367615215
ISBN10:0367615215
Kötéstípus:Puhakötés
Terjedelem:532 oldal
Méret:234x156 mm
Súly:980 g
Nyelv:angol
Illusztrációk: 53 Illustrations, black & white; 53 Line drawings, black & white; 11 Tables, black & white
798
Témakör:

Classical Continuum Mechanics

 
Kiadás sorszáma: 2
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 45.99
Becsült forint ár:
24 144 Ft (22 995 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

21 730 (20 696 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 414 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book explores the foundation of continuum mechanics and constitutive theories of materials using understandable notations. Written using clear language to explore this mathematically demanding area of mechanical engineering, the book provides a thorough guide to continuum mechanics.

Hosszú leírás:

This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua.


Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics.


This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.

Tartalomjegyzék:
Chapter 1: Introduction. Chapter 2: Concepts and Mathematical Preliminaries. Chapter 3: Kinematics of Motion, Deformation and their Measures. Chapter 4: Definitions and Measures of Stresses. Chapter 5: Rate of Deformation, Area, Volume, Strain Rate Tensors, Spin Tensor and Convected Time Derivatives of Stress and Strain Tensors. Chapter 6: Conservation and Balance Laws in Eulerian Description. Chapter 7: Conservation and Balance Laws in Langragian Description. Chapter 8: General considerations in the constitutive theories for solids and fluids. Chapter 9: Constitutive theories for thermoelastic solids. Chapter 10: Ordered Rate Constitutive Theories for Thermoviscoelastic Solids without Memory. Chapter 11: Ordered Rate Constitutive Theories for Thermoviscoelastic Solids with Memory. Chapter 12: Ordered Rate Constitutive Theories for Thermofluids. Chapter 13: Ordered Rate Constitutive Theories for Thermoviscoelastic Fluids. Chapter 14: Mathematical Models with Thermodynamic Relations. Chapter 15: Calculus of variations, energy methods and principle of virtual work. Chapter 16: Advanced Topics